Alongside the timeseries data produced continuously at the laboratories, the gravitational-wave community produces a number of different sets of tabular data, including segments of time indicating interferometer state, and transient event triggers.
LIGO_LW
XML format¶The LIGO Scientific Collaboration uses a custom scheme of XML in which to
store tabular data, called the LIGO_LW
scheme.
Complementing the scheme is a python library - glue.ligolw
- which
allows users to read and write all of the different types of tabular data
produced by gravitational-wave searches.
The remainder of this document outlines the small number of extensions that
GWpy provides for the table classes provided by glue.ligolw
.
Note
All users should review the original documentation for glue.ligolw
to get any full sense of how to use these objects.
LIGO_LW
files¶GWpy annotates all of the Table
subclasses defined
in glue.ligolw.lsctables
to make reading those tables from LIGO_LW
XML files a bit easier.
These annotations hook into the unified input/output scheme used for all of the other core data classes. For example, you can read a table of single-interferometer burst events as follows:
>>> from gwpy.table.lsctables import SnglBurstTable
>>> events = SnglBurstTable.read('../../gwpy/tests/data/H1-LDAS_STRAIN-968654552-10.xml.gz')
For full details, check out the read()
documentation.
The other annotation GWpy defines provides a simple plotting method for a number of classes.
We can extend the above example to include plotting:
>>> plot = events.plot('time', 'central_freq', color='snr', edgecolor='none', epoch=968654552)
>>> plot.set_xlim(968654552, 968654552+10)
>>> plot.set_ylabel('Frequency [Hz]')
>>> plot.set_yscale('log')
>>> plot.set_title('LIGO Hanford Observatory event triggers for GW100916')
>>> plot.add_colorbar(clim=[1, 5], label='Signal-to-noise ratio', cmap='hot_r')
>>> plot.show()
(Source code, png)
These code snippets are part of the GWpy example on plotting event triggers.
Many types of event triggers define a 2-dimensional tile, for example in time and frequency. These tiles can be plotted in a similar manner to simple triggers.
>>> plot = events.plot('time', 'central_freq', 'duration', 'bandwidth', color='snr', epoch=968654552)
>>> plot.set_xlim(968654552, 968654552+10)
>>> plot.set_ylabel('Frequency [Hz]')
>>> plot.set_yscale('log')
>>> plot.set_title('LIGO Hanford Observatory event triggers for GW100916')
>>> plot.add_colorbar(clim=[1, 5], label='Signal-to-noise ratio', cmap='hot_r')
>>> plot.show()
(Source code, png)
These code snippets are part of the GWpy example on plotting events as 2-d tiles.
Note
All of the below classes are based on glue.ligolw.table.Table
.
This reference includes the following class
entries:
gwpy.table.lsctables.
CoincDefTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
how_to_index |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_coinc_def_id (search, search_coinc_type) |
Return the coinc_def_id for the row in the table whose search string and search_coinc_type integer have the values given. |
read (*args, **kwargs) |
Read data into a CoincDefTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (coinc_def_id)'¶how_to_index
= {'cd_ssct_index': ('search', 'search_coinc_type')}¶next_id
= <glue.ligolw.ilwd.coinc_definer_coinc_def_id_class object>¶tableName
= 'coinc_definer:table'¶validcolumns
= {'search': 'lstring', 'description': 'lstring', 'coinc_def_id': 'ilwd:char', 'search_coinc_type': 'int_4u'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_coinc_def_id
(search, search_coinc_type, create_new=True, description=None)¶Return the coinc_def_id for the row in the table whose search string and search_coinc_type integer have the values given. If a matching row is not found, the default behaviour is to create a new row and return the ID assigned to the new row. If, instead, create_new is False then KeyError is raised when a matching row is not found. The optional description parameter can be used to set the description string assigned to the new row if one is created, otherwise the new row is left with no description.
read
(*args, **kwargs)¶Read data into a CoincDefTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
coinc_definer | Yes | No | No |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
CoincTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
how_to_index |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a CoincTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (coinc_event_id)'¶how_to_index
= {'ce_tsi_index': ('time_slide_id',), 'ce_cdi_index': ('coinc_def_id',)}¶interncolumns
= ('process_id', 'coinc_def_id', 'time_slide_id', 'instruments')¶next_id
= <glue.ligolw.ilwd.coinc_event_coinc_event_id_class object>¶tableName
= 'coinc_event:table'¶validcolumns
= {'coinc_event_id': 'ilwd:char', 'instruments': 'lstring', 'nevents': 'int_4u', 'process_id': 'ilwd:char', 'coinc_def_id': 'ilwd:char', 'time_slide_id': 'ilwd:char', 'likelihood': 'real_8'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a CoincTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
coinc_event | Yes | No | No |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
CoincInspiralTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
how_to_index |
|
interncolumns |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a CoincInspiralTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
how_to_index
= {'ci_cei_index': ('coinc_event_id',)}¶interncolumns
= ('coinc_event_id', 'ifos')¶tableName
= 'coinc_inspiral:table'¶validcolumns
= {'false_alarm_rate': 'real_8', 'mchirp': 'real_8', 'minimum_duration': 'real_8', 'mass': 'real_8', 'end_time': 'int_4s', 'coinc_event_id': 'ilwd:char', 'snr': 'real_8', 'end_time_ns': 'int_4s', 'combined_far': 'real_8', 'ifos': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a CoincInspiralTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
coinc_inspiral | Yes | No | No |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
CoincRingdownTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
how_to_index |
|
interncolumns |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a CoincRingdownTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
how_to_index
= {'cr_cei_index': ('coinc_event_id',)}¶interncolumns
= ('coinc_event_id', 'ifos')¶tableName
= 'coinc_ringdown:table'¶validcolumns
= {'snr_sq': 'real_8', 'false_alarm_rate': 'real_8', 'kappa': 'real_8', 'coinc_event_id': 'ilwd:char', 'spin': 'real_8', 'start_time': 'int_4s', 'start_time_ns': 'int_4s', 'combined_far': 'real_8', 'frequency': 'real_8', 'mass': 'real_8', 'choppedl_snr': 'real_8', 'snr': 'real_8', 'eff_coh_snr': 'real_8', 'quality': 'real_8', 'null_stat': 'real_8', 'snr_ratio': 'real_8', 'ifos': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a CoincRingdownTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
coinc_ringdown | Yes | No | No |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
ExperimentMapTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
how_to_index |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_experiment_summ_ids (coinc_event_id) |
Gets all the experiment_summ_ids that map to a given coinc_event_id. |
read (*args, **kwargs) |
Read data into a ExperimentMapTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
how_to_index
= {'em_cei_index': ('coinc_event_id',), 'em_esi_index': ('experiment_summ_id',)}¶tableName
= 'experiment_map:table'¶validcolumns
= {'experiment_summ_id': 'ilwd:char', 'coinc_event_id': 'ilwd:char'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_experiment_summ_ids
(coinc_event_id)¶Gets all the experiment_summ_ids that map to a given coinc_event_id.
read
(*args, **kwargs)¶Read data into a ExperimentMapTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
experiment_map | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
ExperimentSummaryTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
datatypes |
|
how_to_index |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
add_nevents (experiment_summ_id, num_events) |
Add num_events to the nevents column in a specific entry in the table. |
as_id_dict () |
Return table as a dictionary mapping experiment_id, time_slide_id, veto_def_name, and sim_proc_id (if it exists) to the expr_summ_id. |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_expr_summ_id (experiment_id, ...[, ...]) |
Return the expr_summ_id for the row in the table whose experiment_id, time_slide_id, veto_def_name, and datatype match the given. |
read (*args, **kwargs) |
Read data into a ExperimentSummaryTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
write_experiment_summ (experiment_id, ...[, ...]) |
Writes a single entry to the experiment_summ table. |
write_non_injection_summary (experiment_id, ...) |
Method for writing a new set of non-injection experiments to the experiment summary table. |
Attributes Documentation
constraints
= 'PRIMARY KEY (experiment_summ_id)'¶datatypes
= ['slide', 'all_data', 'playground', 'exclude_play', 'simulation']¶how_to_index
= {'es_dt_index': ('datatype',), 'es_ei_index': ('experiment_id',)}¶next_id
= <glue.ligolw.ilwd.experiment_summary_experiment_summ_id_class object>¶tableName
= 'experiment_summary:table'¶validcolumns
= {'experiment_summ_id': 'ilwd:char', 'duration': 'int_4s', 'nevents': 'int_4u', 'sim_proc_id': 'ilwd:char', 'experiment_id': 'ilwd:char', 'datatype': 'lstring', 'time_slide_id': 'ilwd:char', 'veto_def_name': 'lstring'}¶Methods Documentation
add_nevents
(experiment_summ_id, num_events, add_to_current=True)¶Add num_events to the nevents column in a specific entry in the table. If add_to_current is set to False, will overwrite the current nevents entry in the row with num_events. Otherwise, default is to add num_events to the current value.
Note: Can subtract events by passing a negative number to num_events.
as_id_dict
()¶Return table as a dictionary mapping experiment_id, time_slide_id, veto_def_name, and sim_proc_id (if it exists) to the expr_summ_id.
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_expr_summ_id
(experiment_id, time_slide_id, veto_def_name, datatype, sim_proc_id=None)¶Return the expr_summ_id for the row in the table whose experiment_id, time_slide_id, veto_def_name, and datatype match the given. If sim_proc_id, will retrieve the injection run matching that sim_proc_id. If a matching row is not found, returns None.
read
(*args, **kwargs)¶Read data into a ExperimentSummaryTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
experiment_summary | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
write_experiment_summ
(experiment_id, time_slide_id, veto_def_name, datatype, sim_proc_id=None)¶Writes a single entry to the experiment_summ table. This can be used for either injections or non-injection experiments. However, it is recommended that this only be used for injection experiments; for non-injection experiments write_experiment_summ_set should be used to ensure that an entry gets written for every time-slide performed.
write_non_injection_summary
(experiment_id, time_slide_dict, veto_def_name, write_all_data=True, write_playground=True, write_exclude_play=True, return_dict=False)¶Method for writing a new set of non-injection experiments to the experiment summary table. This ensures that for every entry in the experiment table, an entry for every slide is added to the experiment_summ table, rather than just an entry for slides that have events in them. Default is to write a 3 rows for zero-lag: one for all_data, playground, and exclude_play. (If all of these are set to false, will only slide rows.)
Note: sim_proc_id is hard-coded to None because time-slides are not performed with injections.
@experiment_id: the experiment_id for this experiment_summary set @time_slide_dict: the time_slide table as a dictionary; used to figure out
what is zero-lag and what is slide
@veto_def_name: the name of the vetoes applied @write_all_data: if set to True, writes a zero-lag row who’s datatype column
is set to ‘all_data’
@write_playground: same, but datatype is ‘playground’ @write_exclude_play: same, but datatype is ‘exclude_play’ @return_dict: if set to true, returns an id_dict of the table
gwpy.table.lsctables.
ExperimentTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_expr_id (search_group, search, lars_id, ...) |
Return the expr_def_id for the row in the table whose values match the givens. |
get_row_from_id (experiment_id) |
Returns row in matching the given experiment_id. |
read (*args, **kwargs) |
Read data into a ExperimentTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
write_new_expr_id (search_group, search, ...) |
Creates a new def_id for the given arguments and returns it. |
Attributes Documentation
constraints
= 'PRIMARY KEY (experiment_id)'¶next_id
= <glue.ligolw.ilwd.experiment_experiment_id_class object>¶tableName
= 'experiment:table'¶validcolumns
= {'search': 'lstring', 'lars_id': 'lstring', 'experiment_id': 'ilwd:char', 'gps_start_time': 'int_4s', 'instruments': 'lstring', 'gps_end_time': 'int_4s', 'search_group': 'lstring', 'comments': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_expr_id
(search_group, search, lars_id, instruments, gps_start_time, gps_end_time, comments=None)¶Return the expr_def_id for the row in the table whose values match the givens. If a matching row is not found, returns None.
@search_group: string representing the search group (e.g., cbc) @serach: string representing search (e.g., inspiral) @lars_id: string representing lars_id @instruments: the instruments; must be a python set @gps_start_time: string or int representing the gps_start_time of the experiment @gps_end_time: string or int representing the gps_end_time of the experiment
get_row_from_id
(experiment_id)¶Returns row in matching the given experiment_id.
read
(*args, **kwargs)¶Read data into a ExperimentTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
experiment | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
write_new_expr_id
(search_group, search, lars_id, instruments, gps_start_time, gps_end_time, comments=None)¶Creates a new def_id for the given arguments and returns it. If an entry already exists with these, will just return that id.
@search_group: string representing the search group (e.g., cbc) @serach: string representing search (e.g., inspiral) @lars_id: string representing lars_id @instruments: the instruments; must be a python set @gps_start_time: string or int representing the gps_start_time of the experiment @gps_end_time: string or int representing the gps_end_time of the experiment
gwpy.table.lsctables.
FilterTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a FilterTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (filter_id)'¶next_id
= <glue.ligolw.ilwd.filter_filter_id_class object>¶tableName
= 'filter:table'¶validcolumns
= {'comment': 'lstring', 'process_id': 'ilwd:char', 'param_set': 'int_4s', 'start_time': 'int_4s', 'filter_name': 'lstring', 'program': 'lstring', 'filter_id': 'ilwd:char'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a FilterTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
filter | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
GDSTriggerTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a GDSTriggerTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (event_id)'¶interncolumns
= ('process_id', 'ifo', 'subtype')¶next_id
= <glue.ligolw.ilwd.gds_trigger_event_id_class object>¶tableName
= 'gds_trigger:table'¶validcolumns
= {'creator_db': 'int_4s', 'bandwidth': 'real_4', 'noise_power': 'real_4', 'duration': 'real_4', 'freq_peak': 'real_4', 'time_peak': 'real_4', 'freq_sigma': 'real_4', 'size': 'real_4', 'confidence': 'real_4', 'event_id': 'ilwd:char', 'priority': 'int_4s', 'significance': 'real_4', 'pixel_count': 'int_4s', 'start_time': 'int_4s', 'filter_id': 'ilwd:char', 'binarydata_length': 'int_4s', 'process_id': 'ilwd:char_u', 'disposition': 'int_4s', 'name': 'lstring', 'start_time_ns': 'int_4s', 'freq_average': 'real_4', 'time_average': 'real_4', 'binarydata': 'ilwd:char_u', 'subtype': 'lstring', 'frequency': 'real_4', 'time_sigma': 'real_4', 'ifo': 'lstring', 'signal_power': 'real_4'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a GDSTriggerTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
gds_trigger | Yes | No | No |
ligolw | Yes | No | Yes |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
MultiBurstTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
how_to_index |
|
tableName |
|
validcolumns |
Methods Summary
binned_event_rates (stride, column, bins[, ...]) |
Calculate an event rate TimeSeriesDict over a number of bins. |
event_rate (stride[, start, end, timecolumn]) |
Calculate the rate TimeSeries for this Table . |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a MultiBurstTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
how_to_index
= {'mb_cei_index': ('coinc_event_id',)}¶tableName
= 'multi_burst:table'¶validcolumns
= {'central_freq': 'real_4', 'false_alarm_rate': 'real_4', 'confidence': 'real_4', 'creator_db': 'int_4s', 'ligo_angle_sig': 'real_4', 'coinc_event_id': 'ilwd:char', 'start_time_ns': 'int_4s', 'start_time': 'int_4s', 'ligo_axis_ra': 'real_4', 'bandwidth': 'real_4', 'process_id': 'ilwd:char', 'snr': 'real_4', 'ligo_angle': 'real_4', 'amplitude': 'real_4', 'filter_id': 'ilwd:char', 'duration': 'real_4', 'ligo_axis_dec': 'real_4', 'peak_time_ns': 'int_4s', 'peak_time': 'int_4s', 'ifos': 'lstring'}¶Methods Documentation
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]¶Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates :
|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]¶Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a MultiBurstTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
multi_burst | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
MultiInspiralTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
instrument_id |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
binned_event_rates (stride, column, bins[, ...]) |
Calculate an event rate TimeSeriesDict over a number of bins. |
event_rate (stride[, start, end, timecolumn]) |
Calculate the rate TimeSeries for this Table . |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_bestnr ([index, nhigh, ...]) |
Get the BestNR statistic for each row in the table |
get_coinc_chisq () |
@returns the coincident chisq for each row in the table |
get_coinc_snr () |
|
get_column (column) |
|
get_end () |
|
get_new_snr ([index, nhigh, column]) |
|
get_null_chisq () |
@returns the coherent null chisq for each row in the table |
get_null_snr () |
Get the coherent Null SNR for each row in the table. |
get_reduced_bank_chisq () |
@returns the bank chisq per degree of freedom for each row in |
get_reduced_chisq () |
@returns the chisq per degree of freedom for each row in |
get_reduced_coinc_chisq () |
@returns the coincident chisq per degree of freedom for each |
get_reduced_cont_chisq () |
@returns the auto (continuous) chisq per degree of freedom |
get_reduced_sngl_chisq (instrument) |
@returns the single-detector chisq per degree of freedom for |
get_sigmasq (instrument) |
Get the single-detector SNR of the given instrument for each row in the table. |
get_sigmasqs ([instruments]) |
Return dictionary of single-detector sigmas for each row in the table. |
get_sngl_bank_chisq (instrument) |
Get the single-detector chi^2 of the given instrument for each row in the table. |
get_sngl_bank_chisqs ([instruments]) |
Get the single-detector chi^2 for each row in the table. |
get_sngl_chisq (instrument) |
Get the single-detector chi^2 of the given instrument for each row in the table. |
get_sngl_chisqs ([instruments]) |
Get the single-detector chi^2 for each row in the table. |
get_sngl_cont_chisq (instrument) |
Get the single-detector chi^2 of the given instrument for each row in the table. |
get_sngl_cont_chisqs ([instruments]) |
Get the single-detector chi^2 for each row in the table. |
get_sngl_new_snr (ifo[, column, index, nhigh]) |
|
get_sngl_snr (instrument) |
Get the single-detector SNR of the given instrument for each row in the table. |
get_sngl_snrs ([instruments]) |
Get the single-detector SNRs for each row in the table. |
getslide (slide_num) |
Return the triggers with a specific slide number. |
getstat () |
|
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a MultiInspiralTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
veto (seglist) |
|
vetoed (seglist) |
Return the inverse of what veto returns, i.e., return the triggers that lie within a given seglist. |
Attributes Documentation
constraints
= 'PRIMARY KEY (event_id)'¶instrument_id
= {'G1': 'g', 'H2': 'h2', 'H1': 'h1', 'T1': 't', 'V1': 'v', 'L1': 'l'}¶interncolumns
= ('process_id', 'ifos', 'search')¶next_id
= <glue.ligolw.ilwd.multi_inspiral_event_id_class object>¶tableName
= 'multi_inspiral:table'¶validcolumns
= {'amp_term_1': 'real_4', 'amp_term_2': 'real_4', 'amp_term_3': 'real_4', 'amp_term_4': 'real_4', 'amp_term_5': 'real_4', 'amp_term_6': 'real_4', 'amp_term_7': 'real_4', 'amp_term_8': 'real_4', 'amp_term_9': 'real_4', 'chisq_dof': 'int_4s', 't1quad_re': 'real_4', 'autoCorrCohSq': 'real_4', 'v1quad_im': 'real_4', 'sigmasq_h2': 'real_8', 'null_stat_h1h2': 'real_4', 'sigmasq_h1': 'real_8', 'bank_chisq_t': 'real_4', 'bank_chisq_v': 'real_4', 'bank_chisq_l': 'real_4', 'sngl_bank_chisq_dof': 'int_4s', 'ttotal': 'real_4', 'bank_chisq_g': 'real_4', 'snr_h1': 'real_4', 'snr_h2': 'real_4', 'h2quad_re': 'real_4', 'process_id': 'ilwd:char', 'sngl_chisq_dof': 'int_4s', 'end_time': 'int_4s', 'end_time_ns': 'int_4s', 'eff_dist_h1h2': 'real_4', 'h2quad_im': 'real_4', 'ligo_angle_sig': 'real_4', 'cont_chisq_h1': 'real_4', 'l1quad_im': 'real_4', 'ra': 'real_4', 'impulse_time_ns': 'int_4s', 'inclination': 'real_4', 't1quad_im': 'real_4', 'bank_chisq_dof': 'int_4s', 'amp_term_10': 'real_4', 'cont_chisq_g': 'real_4', 'search': 'lstring', 'cont_chisq_l': 'real_4', 'cont_chisq_v': 'real_4', 'l1quad_re': 'real_4', 'cont_chisq_t': 'real_4', 'eta': 'real_4', 'ligo_angle': 'real_4', 'bank_chisq': 'real_4', 'g1quad_re': 'real_4', 'end_time_gmst': 'real_8', 'snr_dof': 'int_4s', 'v1quad_re': 'real_4', 'cont_chisq_h2': 'real_4', 'coa_phase': 'real_4', 'ifos': 'lstring', 'coh_snr_h1h2': 'real_4', 'mchirp': 'real_4', 'tau3': 'real_4', 'chi': 'real_4', 'tau2': 'real_4', 'bank_chisq_h1': 'real_4', 'tau0': 'real_4', 'autoCorrNullSq': 'real_4', 'tau4': 'real_4', 'tau5': 'real_4', 'h1quad_im': 'real_4', 'impulse_time': 'int_4s', 'crossCorrCohSq': 'real_4', 'mass1': 'real_4', 'ampMetricEigenVal2': 'real_8', 'ampMetricEigenVal1': 'real_8', 'distance': 'real_4', 'g1quad_im': 'real_4', 'kappa': 'real_4', 'crossCorrNullSq': 'real_4', 'h1quad_re': 'real_4', 'sngl_cont_chisq_dof': 'int_4s', 'amplitude': 'real_4', 'cohSnrSqLocal': 'real_4', 'dec': 'real_4', 'eff_dist_l': 'real_4', 'chisq_h1': 'real_4', 'chisq_h2': 'real_4', 'eff_dist_g': 'real_4', 'bank_chisq_h2': 'real_4', 'chisq': 'real_4', 'eff_dist_v': 'real_4', 'eff_dist_t': 'real_4', 'sigmasq_t': 'real_8', 'sigmasq_v': 'real_8', 'null_statistic': 'real_4', 'snr_l': 'real_4', 'event_id': 'ilwd:char', 'snr_g': 'real_4', 'polarization': 'real_4', 'cont_chisq': 'real_4', 'sigmasq_g': 'real_8', 'null_stat_degen': 'real_4', 'sigmasq_l': 'real_8', 'time_slide_id': 'ilwd:char', 'snr_v': 'real_4', 'snr_t': 'real_4', 'cont_chisq_dof': 'int_4s', 'trace_snr': 'real_4', 'snr': 'real_4', 'eff_dist_h1': 'real_4', 'eff_dist_h2': 'real_4', 'chisq_t': 'real_4', 'chisq_v': 'real_4', 'mass2': 'real_4', 'chisq_g': 'real_4', 'chisq_l': 'real_4'}¶Methods Documentation
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]¶Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates :
|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]¶Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_bestnr
(index=4.0, nhigh=3.0, null_snr_threshold=4.25, null_grad_thresh=20.0, null_grad_val=0.2)¶Get the BestNR statistic for each row in the table
get_coinc_chisq
()¶@returns the coincident chisq for each row in the table
get_coinc_snr
()¶get_column
(column)¶get_end
()¶get_new_snr
(index=4.0, nhigh=3.0, column='chisq')¶get_null_chisq
()¶@returns the coherent null chisq for each row in the table
get_null_snr
()¶Get the coherent Null SNR for each row in the table.
get_reduced_bank_chisq
()¶@returns the bank chisq per degree of freedom for each row in this table
get_reduced_chisq
()¶@returns the chisq per degree of freedom for each row in this table
get_reduced_coinc_chisq
()¶@returns the coincident chisq per degree of freedom for each row in the table
get_reduced_cont_chisq
()¶@returns the auto (continuous) chisq per degree of freedom for each row in this table
get_reduced_sngl_chisq
(instrument)¶@returns the single-detector chisq per degree of freedom for each row in this table
get_sigmasq
(instrument)¶Get the single-detector SNR of the given instrument for each row in the table.
get_sigmasqs
(instruments=None)¶Return dictionary of single-detector sigmas for each row in the table.
get_sngl_bank_chisq
(instrument)¶Get the single-detector chi^2 of the given instrument for each row in the table.
get_sngl_bank_chisqs
(instruments=None)¶Get the single-detector chi^2 for each row in the table.
get_sngl_chisq
(instrument)¶Get the single-detector chi^2 of the given instrument for each row in the table.
get_sngl_chisqs
(instruments=None)¶Get the single-detector chi^2 for each row in the table.
get_sngl_cont_chisq
(instrument)¶Get the single-detector chi^2 of the given instrument for each row in the table.
get_sngl_cont_chisqs
(instruments=None)¶Get the single-detector chi^2 for each row in the table.
get_sngl_new_snr
(ifo, column='chisq', index=4.0, nhigh=3.0)¶get_sngl_snr
(instrument)¶Get the single-detector SNR of the given instrument for each row in the table.
get_sngl_snrs
(instruments=None)¶Get the single-detector SNRs for each row in the table.
getslide
(slide_num)¶Return the triggers with a specific slide number. @param slide_num: the slide number to recover (contained in the event_id)
getstat
()¶hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a MultiInspiralTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
multi_inspiral | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
veto
(seglist)¶vetoed
(seglist)¶Return the inverse of what veto returns, i.e., return the triggers that lie within a given seglist.
gwpy.table.lsctables.
ProcessTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_ids_by_program (program) |
Return a set containing the process IDs from rows whose program string equals the given program. |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a ProcessTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (process_id)'¶next_id
= <glue.ligolw.ilwd.process_process_id_class object>¶tableName
= 'process:table'¶validcolumns
= {'comment': 'lstring', 'node': 'lstring', 'domain': 'lstring', 'unix_procid': 'int_4s', 'start_time': 'int_4s', 'process_id': 'ilwd:char', 'is_online': 'int_4s', 'ifos': 'lstring', 'jobid': 'int_4s', 'username': 'lstring', 'program': 'lstring', 'end_time': 'int_4s', 'version': 'lstring', 'cvs_repository': 'lstring', 'cvs_entry_time': 'int_4s'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_ids_by_program
(program)¶Return a set containing the process IDs from rows whose program string equals the given program.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a ProcessTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
process | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
ProcessParamsTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
how_to_index |
|
tableName |
|
validcolumns |
Methods Summary
append (row) |
|
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a ProcessParamsTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
how_to_index
= {'pp_pip_index': ('process_id', 'param')}¶tableName
= 'process_params:table'¶validcolumns
= {'process_id': 'ilwd:char', 'program': 'lstring', 'type': 'lstring', 'value': 'lstring', 'param': 'lstring'}¶Methods Documentation
append
(row)¶from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a ProcessParamsTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
process_params | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SearchSummaryTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
how_to_index |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_in_segmentlistdict ([process_ids]) |
Return a segmentlistdict mapping instrument to in segment list. |
get_inlist () |
Return a segmentlist object describing the times spanned by the input segments of all rows in the table. |
get_out_segmentlistdict ([process_ids]) |
Return a segmentlistdict mapping instrument to out segment list. |
get_outlist () |
Return a segmentlist object describing the times spanned by the output segments of all rows in the table. |
read (*args, **kwargs) |
Read data into a SearchSummaryTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
how_to_index
= {'ss_pi_index': ('process_id',)}¶tableName
= 'search_summary:table'¶validcolumns
= {'comment': 'lstring', 'nevents': 'int_4s', 'lal_cvs_tag': 'lstring', 'out_start_time': 'int_4s', 'shared_object': 'lstring', 'in_start_time': 'int_4s', 'nnodes': 'int_4s', 'out_start_time_ns': 'int_4s', 'process_id': 'ilwd:char', 'in_end_time': 'int_4s', 'out_end_time_ns': 'int_4s', 'lalwrapper_cvs_tag': 'lstring', 'in_start_time_ns': 'int_4s', 'in_end_time_ns': 'int_4s', 'out_end_time': 'int_4s', 'ifos': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_in_segmentlistdict
(process_ids=None)¶Return a segmentlistdict mapping instrument to in segment list. If process_ids is a sequence of process IDs, then only rows with matching IDs are included otherwise all rows are included.
Note: the result is not coalesced, each segmentlist contains the segments listed for that instrument as they appeared in the table.
get_inlist
()¶Return a segmentlist object describing the times spanned by the input segments of all rows in the table.
Note: the result is not coalesced, the segmentlist contains the segments as they appear in the table.
get_out_segmentlistdict
(process_ids=None)¶Return a segmentlistdict mapping instrument to out segment list. If process_ids is a sequence of process IDs, then only rows with matching IDs are included otherwise all rows are included.
Note: the result is not coalesced, each segmentlist contains the segments listed for that instrument as they appeared in the table.
get_outlist
()¶Return a segmentlist object describing the times spanned by the output segments of all rows in the table.
Note: the result is not coalesced, the segmentlist contains the segments as they appear in the table.
read
(*args, **kwargs)¶Read data into a SearchSummaryTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
search_summary | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SearchSummVarsTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a SearchSummVarsTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (search_summvar_id)'¶next_id
= <glue.ligolw.ilwd.search_summvars_search_summvar_id_class object>¶tableName
= 'search_summvars:table'¶validcolumns
= {'search_summvar_id': 'ilwd:char', 'process_id': 'ilwd:char', 'name': 'lstring', 'value': 'real_8', 'string': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a SearchSummVarsTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
search_summvars | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SimBurstTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a SimBurstTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (simulation_id)'¶interncolumns
= ('process_id', 'waveform')¶next_id
= <glue.ligolw.ilwd.sim_burst_simulation_id_class object>¶tableName
= 'sim_burst:table'¶validcolumns
= {'hrss': 'real_8', 'time_geocent_gps': 'int_4s', 'psi': 'real_8', 'amplitude': 'real_8', 'egw_over_rsquared': 'real_8', 'waveform_number': 'int_8u', 'pol_ellipse_angle': 'real_8', 'simulation_id': 'ilwd:char', 'q': 'real_8', 'waveform': 'lstring', 'bandwidth': 'real_8', 'process_id': 'ilwd:char', 'frequency': 'real_8', 'ra': 'real_8', 'time_geocent_gmst': 'real_8', 'pol_ellipse_e': 'real_8', 'duration': 'real_8', 'time_slide_id': 'ilwd:char', 'dec': 'real_8', 'time_geocent_gps_ns': 'int_4s'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a SimBurstTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
sim_burst | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SimInspiralTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_chirp_dist ([ref_mass]) |
|
get_chirp_eff_dist (site[, ref_mass]) |
|
get_column (column) |
|
get_end ([site]) |
|
get_spin_mag (objectnumber) |
|
read (*args, **kwargs) |
Read data into a SimInspiralTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
veto (seglist) |
|
vetoed (seglist) |
Return the inverse of what veto returns, i.e., return the triggers that lie within a given seglist. |
Attributes Documentation
constraints
= 'PRIMARY KEY (simulation_id)'¶interncolumns
= ('process_id', 'waveform', 'source')¶next_id
= <glue.ligolw.ilwd.sim_inspiral_simulation_id_class object>¶tableName
= 'sim_inspiral:table'¶validcolumns
= {'theta0': 'real_4', 'geocent_end_time_ns': 'int_4s', 'amp_order': 'int_4s', 'end_time_gmst': 'real_8', 'coa_phase': 'real_4', 'mchirp': 'real_4', 'numrel_mode_min': 'int_4s', 'numrel_mode_max': 'int_4s', 'source': 'lstring', 'latitude': 'real_4', 'numrel_data': 'lstring', 'geocent_end_time': 'int_4s', 'spin2x': 'real_4', 'spin2y': 'real_4', 'spin2z': 'real_4', 'process_id': 'ilwd:char', 'h_end_time': 'int_4s', 'distance': 'real_4', 't_end_time': 'int_4s', 'taper': 'lstring', 'longitude': 'real_4', 'v_end_time_ns': 'int_4s', 'bandpass': 'int_4s', 'eff_dist_l': 'real_4', 'eff_dist_h': 'real_4', 'eff_dist_g': 'real_4', 't_end_time_ns': 'int_4s', 'spin1y': 'real_4', 'spin1x': 'real_4', 'spin1z': 'real_4', 'h_end_time_ns': 'int_4s', 'eff_dist_t': 'real_4', 'l_end_time_ns': 'int_4s', 'alpha2': 'real_4', 'alpha3': 'real_4', 'alpha1': 'real_4', 'alpha6': 'real_4', 'alpha4': 'real_4', 'alpha5': 'real_4', 'l_end_time': 'int_4s', 'polarization': 'real_4', 'waveform': 'lstring', 'phi0': 'real_4', 'inclination': 'real_4', 'simulation_id': 'ilwd:char', 'f_lower': 'real_4', 'g_end_time_ns': 'int_4s', 'eff_dist_v': 'real_4', 'beta': 'real_4', 'g_end_time': 'int_4s', 'alpha': 'real_4', 'f_final': 'real_4', 'mass1': 'real_4', 'mass2': 'real_4', 'v_end_time': 'int_4s', 'eta': 'real_4', 'psi0': 'real_4', 'psi3': 'real_4'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_chirp_dist
(ref_mass=1.4)¶get_chirp_eff_dist
(site, ref_mass=1.4)¶get_column
(column)¶get_end
(site=None)¶get_spin_mag
(objectnumber)¶read
(*args, **kwargs)¶Read data into a SimInspiralTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
sim_inspiral | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
veto
(seglist)¶vetoed
(seglist)¶Return the inverse of what veto returns, i.e., return the triggers that lie within a given seglist.
gwpy.table.lsctables.
SimRingdownTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a SimRingdownTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (simulation_id)'¶interncolumns
= ('process_id', 'waveform', 'coordinates')¶next_id
= <glue.ligolw.ilwd.sim_ringdown_simulation_id_class object>¶tableName
= 'sim_ringdown:table'¶validcolumns
= {'simulation_id': 'ilwd:char', 'eff_dist_l': 'real_4', 'hrss': 'real_4', 'v_start_time_ns': 'int_4s', 'eff_dist_h': 'real_4', 'epsilon': 'real_4', 'process_id': 'ilwd:char', 'start_time_gmst': 'real_8', 'phase': 'real_4', 'eff_dist_v': 'real_4', 'spin': 'real_4', 'quality': 'real_4', 'h_start_time': 'int_4s', 'distance': 'real_4', 'hrss_l': 'real_4', 'hrss_h': 'real_4', 'h_start_time_ns': 'int_4s', 'v_start_time': 'int_4s', 'coordinates': 'lstring', 'polarization': 'real_4', 'waveform': 'lstring', 'frequency': 'real_4', 'mass': 'real_4', 'longitude': 'real_4', 'amplitude': 'real_4', 'geocent_start_time_ns': 'int_4s', 'latitude': 'real_4', 'hrss_v': 'real_4', 'geocent_start_time': 'int_4s', 'l_start_time': 'int_4s', 'l_start_time_ns': 'int_4s', 'inclination': 'real_4'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a SimRingdownTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
sim_ringdown | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SnglBurstTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
binned_event_rates (stride, column, bins[, ...]) |
Calculate an event rate TimeSeriesDict over a number of bins. |
event_rate (stride[, start, end, timecolumn]) |
Calculate the rate TimeSeries for this Table . |
fetch (channel, etg, start, end[, verbose]) |
Find and read events into a SnglBurstTable . |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_band () |
@returns: the frequency band of each row in the table |
get_column (column) |
@returns: an array of column values for each row in the table |
get_ms_band () |
@returns: the frequency band of the most significant tile |
get_ms_period () |
@returns: the period segment for the most significant tile |
get_ms_start () |
@returns: the start time of the most significant tile for |
get_ms_stop () |
@returns: the stop time of the most significant tile for |
get_peak () |
@returns: the peak time of each row in the table |
get_period () |
@returns: the period segment of each row in the table |
get_q () |
@returns: the Q of each row in the table |
get_start () |
@returns: the start time of each row in the table |
get_stop () |
@returns: the stop time of each row in the table |
get_z () |
@returns: the Z (Omega-Pipeline energy) of each row in the |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SnglBurstTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
veto (seglist) |
@returns: those rows of the table that don’t lie within a |
veto_seglistdict (seglistdict) |
|
vetoed (seglist) |
@returns: those rows of the table that lie within a given |
vetoed_seglistdict (seglistdict) |
Attributes Documentation
constraints
= 'PRIMARY KEY (event_id)'¶interncolumns
= ('process_id', 'ifo', 'search', 'channel')¶next_id
= <glue.ligolw.ilwd.sngl_burst_event_id_class object>¶tableName
= 'sngl_burst:table'¶validcolumns
= {'param_two_value': 'real_8', 'chisq_dof': 'real_8', 'bandwidth': 'real_4', 'peak_time_error': 'real_4', 'central_freq': 'real_4', 'confidence': 'real_4', 'peak_frequency': 'real_4', 'peak_strain_error': 'real_4', 'ms_snr': 'real_4', 'filter_id': 'ilwd:char', 'time_lag': 'real_4', 'peak_time_ns': 'int_4s', 'start_time': 'int_4s', 'process_id': 'ilwd:char', 'fhigh': 'real_4', 'ms_stop_time_ns': 'int_4s', 'ms_start_time_ns': 'int_4s', 'param_one_name': 'lstring', 'stop_time_ns': 'int_4s', 'channel': 'lstring', 'amplitude': 'real_4', 'ms_duration': 'real_4', 'ifo': 'lstring', 'creator_db': 'int_4s', 'peak_strain': 'real_4', 'param_two_name': 'lstring', 'chisq': 'real_8', 'ms_flow': 'real_4', 'duration': 'real_4', 'ms_start_time': 'int_4s', 'param_three_name': 'lstring', 'event_id': 'ilwd:char', 'peak_frequency_error': 'real_4', 'param_one_value': 'real_8', 'param_three_value': 'real_8', 'hrss': 'real_4', 'ms_hrss': 'real_4', 'stop_time': 'int_4s', 'peak_time': 'int_4s', 'ms_fhigh': 'real_4', 'ms_confidence': 'real_4', 'snr': 'real_4', 'search': 'lstring', 'start_time_ns': 'int_4s', 'tfvolume': 'real_4', 'flow': 'real_4', 'ms_bandwidth': 'real_4', 'ms_stop_time': 'int_4s'}¶Methods Documentation
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]¶Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates :
|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]¶Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
fetch
(channel, etg, start, end, verbose=False, **kwargs)[source]¶Find and read events into a SnglBurstTable
.
Event XML files are searched for only on the LIGO Data Grid using the conventions set out in LIGO-T1300468.
Warning
This method will not work on machines outside of the LIGO Lab computing centres at Caltech, LHO, and LHO.
Parameters: | channel :
etg :
start :
end :
verbose :
**kwargs :
|
---|---|
Returns: | table :
|
Raises: | ValueError :
|
See also
SnglBurstTable.read
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_band
()¶@returns: the frequency band of each row in the table @returntype: glue.segments.segmentlist
get_column
(column)¶@returns: an array of column values for each row in the table
get_ms_band
()¶@returns: the frequency band of the most significant tile for each row in the table
get_ms_period
()¶@returns: the period segment for the most significant tile of each row in the table @returntype: glue.segments.segmentlist
get_ms_start
()¶@returns: the start time of the most significant tile for each row in the table @returntype: numpy.ndarray
get_ms_stop
()¶@returns: the stop time of the most significant tile for each row in the table @returntype: numpy.ndarray
get_peak
()¶@returns: the peak time of each row in the table @returntype: numpy.ndarray
get_period
()¶@returns: the period segment of each row in the table @returntype: glue.segments.segmentlist
get_q
()¶@returns: the Q of each row in the table @returntype: numpy.ndarray
get_start
()¶@returns: the start time of each row in the table @returntype: numpy.ndarray
get_stop
()¶@returns: the stop time of each row in the table @returntype: numpy.ndarray
get_z
()¶@returns: the Z (Omega-Pipeline energy) of each row in the table @returntype: numpy.ndarray
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SnglBurstTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | Yes |
cwb | Yes | No | No |
cwb-ascii | Yes | No | Yes |
ligolw | Yes | No | Yes |
omega | Yes | No | No |
omegadq | Yes | No | No |
omicron | Yes | No | Yes |
sngl_burst | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
veto
(seglist)¶@returns: those rows of the table that don’t lie within a given seglist
veto_seglistdict
(seglistdict)¶vetoed
(seglist)¶@returns: those rows of the table that lie within a given seglist
vetoed_seglistdict
(seglistdict)¶gwpy.table.lsctables.
SnglInspiralTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
binned_event_rates (stride, column, bins[, ...]) |
Calculate an event rate TimeSeriesDict over a number of bins. |
event_rate (stride[, start, end, timecolumn]) |
Calculate the rate TimeSeries for this Table . |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_bank_effective_snr ([fac]) |
|
get_bank_new_snr ([index]) |
|
get_chirp_eff_dist ([ref_mass]) |
|
get_column (column[, fac, index]) |
|
get_cont_effective_snr ([fac]) |
|
get_cont_new_snr ([index]) |
|
get_effective_snr ([fac]) |
|
get_end () |
|
get_lvS5stat () |
|
get_new_snr ([index]) |
|
get_reduced_bank_chisq () |
|
get_reduced_chisq () |
|
get_reduced_cont_chisq () |
|
get_snr_over_chi () |
|
getslide (slide_num) |
Return the triggers with a specific slide number. |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
ifocut (ifo[, inplace]) |
Return a SnglInspiralTable with rows from self having IFO equal to the given ifo. |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SnglInspiralTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
veto (seglist) |
|
veto_seglistdict (seglistdict) |
|
vetoed (seglist) |
Return the inverse of what veto returns, i.e., return the triggers that lie within a given seglist. |
vetoed_seglistdict (seglistdict) |
Attributes Documentation
constraints
= 'PRIMARY KEY (event_id)'¶interncolumns
= ('process_id', 'ifo', 'search', 'channel')¶next_id
= <glue.ligolw.ilwd.sngl_inspiral_event_id_class object>¶tableName
= 'sngl_inspiral:table'¶validcolumns
= {'cont_chisq': 'real_4', 'bank_chisq': 'real_4', 'chisq_dof': 'int_4s', 'end_time_gmst': 'real_8', 'event_duration': 'real_8', 'chisq': 'real_4', 'spin1y': 'real_4', 'spin1x': 'real_4', 'alpha': 'real_4', 'coa_phase': 'real_4', 'alpha2': 'real_4', 'mchirp': 'real_4', 'alpha1': 'real_4', 'alpha6': 'real_4', 'alpha4': 'real_4', 'alpha5': 'real_4', 'event_id': 'ilwd:char', 'chi': 'real_4', 'cont_chisq_dof': 'int_4s', 'spin2y': 'real_4', 'tau2': 'real_4', 'tau3': 'real_4', 'tau0': 'real_4', 'tau4': 'real_4', 'tau5': 'real_4', 'template_duration': 'real_8', 'impulse_time': 'int_4s', 'impulse_time_ns': 'int_4s', 'rsqveto_duration': 'real_4', 'channel': 'lstring', 'mtotal': 'real_4', 'alpha3': 'real_4', 'spin1z': 'real_4', 'Gamma5': 'real_4', 'spin2x': 'real_4', 'f_final': 'real_4', 'beta': 'real_4', 'process_id': 'ilwd:char', 'snr': 'real_4', 'bank_chisq_dof': 'int_4s', 'kappa': 'real_4', 'eff_distance': 'real_4', 'Gamma7': 'real_4', 'Gamma6': 'real_4', 'search': 'lstring', 'Gamma4': 'real_4', 'mass1': 'real_4', 'Gamma2': 'real_4', 'Gamma1': 'real_4', 'mass2': 'real_4', 'ttotal': 'real_4', 'Gamma0': 'real_4', 'spin2z': 'real_4', 'Gamma9': 'real_4', 'Gamma8': 'real_4', 'Gamma3': 'real_4', 'eta': 'real_4', 'psi0': 'real_4', 'end_time': 'int_4s', 'amplitude': 'real_4', 'psi3': 'real_4', 'end_time_ns': 'int_4s', 'ifo': 'lstring', 'sigmasq': 'real_8'}¶Methods Documentation
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]¶Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates :
|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]¶Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_bank_effective_snr
(fac=250.0)¶get_bank_new_snr
(index=6.0)¶get_chirp_eff_dist
(ref_mass=1.4)¶get_column
(column, fac=250.0, index=6.0)¶get_cont_effective_snr
(fac=250.0)¶get_cont_new_snr
(index=6.0)¶get_effective_snr
(fac=250.0)¶get_end
()¶get_lvS5stat
()¶get_new_snr
(index=6.0)¶get_reduced_bank_chisq
()¶get_reduced_chisq
()¶get_reduced_cont_chisq
()¶get_snr_over_chi
()¶getslide
(slide_num)¶Return the triggers with a specific slide number. @param slide_num: the slide number to recover (contained in the event_id)
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
ifocut
(ifo, inplace=False)¶Return a SnglInspiralTable with rows from self having IFO equal to the given ifo. If inplace, modify self directly, else create a new table and fill it.
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SnglInspiralTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
sngl_inspiral | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
veto
(seglist)¶veto_seglistdict
(seglistdict)¶vetoed
(seglist)¶Return the inverse of what veto returns, i.e., return the triggers that lie within a given seglist.
vetoed_seglistdict
(seglistdict)¶gwpy.table.lsctables.
SnglRingdownTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
binned_event_rates (stride, column, bins[, ...]) |
Calculate an event rate TimeSeriesDict over a number of bins. |
event_rate (stride[, start, end, timecolumn]) |
Calculate the rate TimeSeries for this Table . |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_start () |
|
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SnglRingdownTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (event_id)'¶interncolumns
= ('process_id', 'ifo', 'channel')¶next_id
= <glue.ligolw.ilwd.sngl_ringdown_event_id_class object>¶tableName
= 'sngl_ringdown:table'¶validcolumns
= {'ds2_H1H2': 'real_4', 'num_clust_trigs': 'int_4s', 'frequency': 'real_4', 'ds2_L1V1': 'real_4', 'quality': 'real_4', 'event_id': 'ilwd:char', 'spin': 'real_4', 'sigma_sq': 'real_8', 'channel': 'lstring', 'ds2_H2L1': 'real_4', 'epsilon': 'real_4', 'start_time': 'int_4s', 'ds2_H2V1': 'real_4', 'snr': 'real_4', 'start_time_gmst': 'real_8', 'phase': 'real_4', 'ds2_H1V1': 'real_4', 'start_time_ns': 'int_4s', 'eff_dist': 'real_4', 'process_id': 'ilwd:char', 'mass': 'real_4', 'amplitude': 'real_4', 'ifo': 'lstring', 'ds2_H1L1': 'real_4'}¶Methods Documentation
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]¶Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates :
|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]¶Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_start
()¶hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SnglRingdownTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
sngl_ringdown | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
StochasticTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a StochasticTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
tableName
= 'stochastic:table'¶validcolumns
= {'channel_two': 'lstring', 'start_time': 'int_4s', 'channel_one': 'lstring', 'duration_ns': 'int_4s', 'process_id': 'ilwd:char', 'cc_stat': 'real_8', 'duration': 'int_4s', 'f_max': 'real_8', 'ifo_two': 'lstring', 'start_time_ns': 'int_4s', 'cc_sigma': 'real_8', 'f_min': 'real_8', 'ifo_one': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a StochasticTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
stochastic | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
StochSummTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a StochSummTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
tableName
= 'stochsumm:table'¶validcolumns
= {'channel_two': 'lstring', 'start_time': 'int_4s', 'channel_one': 'lstring', 'process_id': 'ilwd:char', 'f_max': 'real_8', 'ifo_two': 'lstring', 'start_time_ns': 'int_4s', 'f_min': 'real_8', 'ifo_one': 'lstring', 'end_time': 'int_4s', 'error': 'real_8', 'end_time_ns': 'int_4s', 'y_opt': 'real_8'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a StochSummTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
stochsumm | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SummValueTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SummValueTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (summ_value_id)'¶interncolumns
= ('program', 'process_id', 'ifo', 'name', 'comment')¶next_id
= <glue.ligolw.ilwd.summ_value_summ_value_id_class object>¶tableName
= 'summ_value:table'¶validcolumns
= {'comment': 'lstring', 'start_time': 'int_4s', 'process_id': 'ilwd:char', 'summ_value_id': 'ilwd:char', 'segment_def_id': 'ilwd:char', 'ifo': 'lstring', 'name': 'lstring', 'start_time_ns': 'int_4s', 'value': 'real_4', 'intvalue': 'int_4s', 'program': 'lstring', 'end_time': 'int_4s', 'error': 'real_4', 'end_time_ns': 'int_4s', 'frameset_group': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SummValueTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
summ_value | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SegmentTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SegmentTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (segment_id)'¶interncolumns
= ('process_id',)¶next_id
= <glue.ligolw.ilwd.segment_segment_id_class object>¶tableName
= 'segment:table'¶validcolumns
= {'segment_def_cdb': 'int_4s', 'process_id': 'ilwd:char', 'creator_db': 'int_4s', 'end_time': 'int_4s', 'segment_id': 'ilwd:char', 'segment_def_id': 'ilwd:char', 'start_time': 'int_4s', 'start_time_ns': 'int_4s', 'end_time_ns': 'int_4s'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SegmentTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
segment | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SegmentSumTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get ([segment_def_id]) |
Return a segmentlist object describing the times spanned by the segments carrying the given segment_def_id. |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SegmentSumTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (segment_sum_id)'¶interncolumns
= ('process_id', 'segment_def_id')¶next_id
= <glue.ligolw.ilwd.segment_summary_segment_sum_id_class object>¶tableName
= 'segment_summary:table'¶validcolumns
= {'comment': 'lstring', 'segment_def_cdb': 'int_4s', 'process_id': 'ilwd:char', 'creator_db': 'int_4s', 'end_time': 'int_4s', 'start_time_ns': 'int_4s', 'segment_def_id': 'ilwd:char', 'start_time': 'int_4s', 'end_time_ns': 'int_4s', 'segment_sum_id': 'ilwd:char'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get
(segment_def_id=None)¶Return a segmentlist object describing the times spanned by the segments carrying the given segment_def_id. If segment_def_id is None then all segments are returned.
Note: the result is not coalesced, the segmentlist contains the segments as they appear in the table.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SegmentSumTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
segment_summary | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SegmentDefTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a SegmentDefTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (segment_def_id)'¶interncolumns
= ('process_id',)¶next_id
= <glue.ligolw.ilwd.segment_definer_segment_def_id_class object>¶tableName
= 'segment_definer:table'¶validcolumns
= {'comment': 'lstring', 'process_id': 'ilwd:char', 'creator_db': 'int_4s', 'name': 'lstring', 'version': 'int_4s', 'segment_def_id': 'ilwd:char', 'insertion_time': 'int_4s', 'ifos': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a SegmentDefTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
segment_definer | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
SummMimeTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a SummMimeTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (summ_mime_id)'¶next_id
= <glue.ligolw.ilwd.summ_mime_summ_mime_id_class object>¶tableName
= 'summ_mime:table'¶validcolumns
= {'origin': 'lstring', 'mimedata': 'blob', 'start_time_ns': 'int_4s', 'start_time': 'int_4s', 'summ_mime_id': 'ilwd:char', 'comment': 'lstring', 'filename': 'lstring', 'mimedata_length': 'int_4s', 'process_id': 'ilwd:char', 'end_time': 'int_4s', 'mimetype': 'lstring', 'descrip': 'lstring', 'submitter': 'lstring', 'segment_def_id': 'ilwd:char', 'frameset_group': 'lstring', 'end_time_ns': 'int_4s', 'channel': 'lstring'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a SummMimeTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
summ_mime | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
TimeSlideSegmentMapTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
read (*args, **kwargs) |
Read data into a TimeSlideSegmentMapTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
tableName
= 'time_slide_segment_map:table'¶validcolumns
= {'time_slide_id': 'ilwd:char', 'segment_def_id': 'ilwd:char'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
read
(*args, **kwargs)¶Read data into a TimeSlideSegmentMapTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
time_slide_segment_map | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
TimeSlideTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
constraints |
|
interncolumns |
|
next_id |
|
tableName |
|
validcolumns |
Methods Summary
append_offsetvector (offsetvect, process) |
Append rows describing an instrument –> offset mapping to this table. |
as_dict () |
Return a ditionary mapping time slide IDs to offset dictionaries. |
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
get_time_slide_id (offsetdict[, create_new, ...]) |
Return the time_slide_id corresponding to the offset vector described by offsetdict, a dictionary of instrument/offset pairs. |
read (*args, **kwargs) |
Read data into a TimeSlideTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
constraints
= 'PRIMARY KEY (time_slide_id, instrument)'¶interncolumns
= ('process_id', 'time_slide_id', 'instrument')¶next_id
= <glue.ligolw.ilwd.time_slide_time_slide_id_class object>¶tableName
= 'time_slide:table'¶validcolumns
= {'instrument': 'lstring', 'time_slide_id': 'ilwd:char', 'process_id': 'ilwd:char', 'offset': 'real_8'}¶Methods Documentation
append_offsetvector
(offsetvect, process)¶Append rows describing an instrument –> offset mapping to this table. offsetvect is a dictionary mapping instrument to offset. process should be the row in the process table on which the new time_slide table rows will be blamed (or any object with a process_id attribute). The return value is the time_slide_id assigned to the new rows.
as_dict
()¶Return a ditionary mapping time slide IDs to offset dictionaries.
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
get_time_slide_id
(offsetdict, create_new=None, superset_ok=False, nonunique_ok=False)¶Return the time_slide_id corresponding to the offset vector described by offsetdict, a dictionary of instrument/offset pairs.
If the optional create_new argument is None (the default), then the table must contain a matching offset vector. The return value is the ID of that vector. If the table does not contain a matching offset vector then KeyError is raised.
If the optional create_new argument is set to a Process object (or any other object with a process_id attribute), then if the table does not contain a matching offset vector a new one will be added to the table and marked as having been created by the given process. The return value is the ID of the (possibly newly created) matching offset vector.
If the optional superset_ok argument is False (the default) then an offset vector in the table is considered to “match” the requested offset vector only if they contain the exact same set of instruments. If the superset_ok argument is True, then an offset vector in the table is considered to match the requested offset vector as long as it provides the same offsets for the same instruments as the requested vector, even if it provides offsets for other instruments as well.
More than one offset vector in the table might match the requested vector. If the optional nonunique_ok argument is False (the default), then KeyError will be raised if more than one offset vector in the table is found to match the requested vector. If the optional nonunique_ok is True then the return value is the ID of one of the matching offset vectors selected at random.
read
(*args, **kwargs)¶Read data into a TimeSlideTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
time_slide | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|
gwpy.table.lsctables.
VetoDefTable
(*args)¶Bases: glue.ligolw.table.Table
Attributes Summary
interncolumns |
|
tableName |
|
validcolumns |
Methods Summary
from_recarray (array[, columns]) |
Create a new table from a numpy.recarray |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
plot (*args, **kwargs) |
Generate an EventTablePlot of this Table . |
read (*args, **kwargs) |
Read data into a VetoDefTable . |
to_recarray ([columns, on_attributeerror]) |
Convert this table to a structured numpy.recarray |
Attributes Documentation
interncolumns
= ('process_id', 'ifo')¶tableName
= 'veto_definer:table'¶validcolumns
= {'category': 'int_4s', 'comment': 'lstring', 'end_pad': 'int_4s', 'process_id': 'ilwd:char', 'name': 'lstring', 'version': 'int_4s', 'start_pad': 'int_4s', 'start_time': 'int_4s', 'ifo': 'lstring', 'end_time': 'int_4s'}¶Methods Documentation
from_recarray
(array, columns=None)[source]¶Create a new table from a numpy.recarray
Parameters: | array :
column :
|
---|
Notes
The columns populated in the numpy.recarray
must all map exactly to
valid columns of the target Table
.
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs :
|
---|---|
Returns: | plot :
|
plot
(*args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs :
|
---|---|
Returns: | plot :
|
See also
gwpy.plotter.EventTablePlot
read
(*args, **kwargs)¶Read data into a VetoDefTable
.
Parameters: | f : columns :
ifo :
filt : nproc : contenthandler :
**loadtxtkwargs :
|
---|---|
Returns: | table :
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii | Yes | No | Yes |
csv | Yes | No | No |
ligolw | Yes | No | Yes |
veto_definer | Yes | No | No |
to_recarray
(columns=None, on_attributeerror='raise')[source]¶Convert this table to a structured numpy.recarray
This returned recarray
is a blank data container, mapping
columns in the original LIGO_LW table to fields in the output, but
mapping none of the instance methods of the origin table.
Parameters: | columns :
on_attributeerror :
|
---|