gwpy.timeseries.StateTimeSeries[source]¶Bases: gwpy.timeseries.core.TimeSeriesBase
Boolean array representing a good/bad state determination
| Parameters: | value : array-like 
 t0 :  
 dt :  
 sample_rate :  
 times :  
 name :  
 channel :  
 dtype :  
 copy :  
 subok :  
 | 
|---|
Notes
Key methods
| to_dqflag([name, minlen, dtype, round, …]) | Convert this series into a DataQualityFlag | 
Methods Summary
| abs(x, /[, out, where, casting, order, …]) | Calculate the absolute value element-wise. | 
| all([axis, out, keepdims]) | Returns True if all elements evaluate to True. | 
| any([axis, out, keepdims]) | Returns True if any of the elements of aevaluate to True. | 
| append(other[, gap, inplace, pad, resize]) | Connect another series onto the end of the current one. | 
| argmax([axis, out]) | Return indices of the maximum values along the given axis. | 
| argmin([axis, out]) | Return indices of the minimum values along the given axis of a. | 
| argpartition(kth[, axis, kind, order]) | Returns the indices that would partition this array. | 
| argsort([axis, kind, order]) | Returns the indices that would sort this array. | 
| astype(dtype[, order, casting, subok, copy]) | Copy of the array, cast to a specified type. | 
| byteswap(inplace) | Swap the bytes of the array elements | 
| choose(choices[, out, mode]) | Use an index array to construct a new array from a set of choices. | 
| clip([min, max, out]) | Return an array whose values are limited to [min, max]. | 
| compress(condition[, axis, out]) | Return selected slices of this array along given axis. | 
| conj() | Complex-conjugate all elements. | 
| conjugate() | Return the complex conjugate, element-wise. | 
| copy([order]) | Return a copy of the array. | 
| crop([start, end, copy]) | Crop this series to the given x-axis extent. | 
| cumprod([axis, dtype, out]) | Return the cumulative product of the elements along the given axis. | 
| cumsum([axis, dtype, out]) | Return the cumulative sum of the elements along the given axis. | 
| decompose([bases]) | Generates a new Quantitywith the units decomposed. | 
| diagonal([offset, axis1, axis2]) | Return specified diagonals. | 
| diff([n, axis]) | Calculate the n-th order discrete difference along given axis. | 
| dot(b[, out]) | Dot product of two arrays. | 
| dump(file) | Dump a pickle of the array to the specified file. | 
| dumps() | Returns the pickle of the array as a string. | 
| ediff1d([to_end, to_begin]) | |
| fetch(channel, start, end[, host, port, …]) | Fetch data from NDS | 
| fetch_open_data(ifo, start, end[, …]) | Fetch open-access data from the LIGO Open Science Center | 
| fill(value) | Fill the array with a scalar value. | 
| find(channel, start, end[, frametype, pad, …]) | Find and read data from frames for a channel | 
| flatten([order]) | Return a copy of the array collapsed into one dimension. | 
| from_lal(lalts[, copy]) | Generate a new TimeSeries from a LAL TimeSeries of any type. | 
| from_nds2_buffer(buffer_, **metadata) | Construct a new TimeSeriesfrom annds2.bufferobject | 
| from_pycbc(pycbcseries[, copy]) | Convert a pycbc.types.timeseries.TimeSeriesinto aTimeSeries | 
| get(channel, start, end[, pad, dtype, …]) | Get data for this channel from frames or NDS | 
| getfield(dtype[, offset]) | Returns a field of the given array as a certain type. | 
| insert(obj, values[, axis]) | Insert values along the given axis before the given indices and return a new Quantityobject. | 
| is_compatible(other) | Check whether this series and other have compatible metadata | 
| is_contiguous(other[, tol]) | Check whether other is contiguous with self. | 
| item(*args) | Copy an element of an array to a standard Python scalar and return it. | 
| itemset(*args) | Insert scalar into an array (scalar is cast to array’s dtype, if possible) | 
| max([axis, out]) | Return the maximum along a given axis. | 
| mean([axis, dtype, out, keepdims]) | Returns the average of the array elements along given axis. | 
| median([axis]) | Compute the median along the specified axis. | 
| min([axis, out, keepdims]) | Return the minimum along a given axis. | 
| nansum([axis, out, keepdims]) | |
| newbyteorder([new_order]) | Return the array with the same data viewed with a different byte order. | 
| nonzero() | Return the indices of the elements that are non-zero. | 
| override_unit(unit[, parse_strict]) | Forcefully reset the unit of these data | 
| pad(pad_width, **kwargs) | Pad this series to a new size | 
| partition(kth[, axis, kind, order]) | Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array. | 
| plot(**kwargs) | Plot the data for this timeseries | 
| prepend(other[, gap, inplace, pad, resize]) | Connect another series onto the start of the current one. | 
| prod([axis, dtype, out, keepdims]) | Return the product of the array elements over the given axis | 
| ptp([axis, out]) | Peak to peak (maximum - minimum) value along a given axis. | 
| put(indices, values[, mode]) | Set a.flat[n] = values[n]for allnin indices. | 
| ravel([order]) | Return a flattened array. | 
| read(source, *args, **kwargs) | Read data into a TimeSeries | 
| repeat(repeats[, axis]) | Repeat elements of an array. | 
| reshape(shape[, order]) | Returns an array containing the same data with a new shape. | 
| resize(new_shape[, refcheck]) | Change shape and size of array in-place. | 
| round([decimals, out]) | Return awith each element rounded to the given number of decimals. | 
| searchsorted(v[, side, sorter]) | Find indices where elements of v should be inserted in a to maintain order. | 
| setfield(val, dtype[, offset]) | Put a value into a specified place in a field defined by a data-type. | 
| setflags([write, align, uic]) | Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively. | 
| shift(delta) | Shift this TimeSeriesforward in time bydelta | 
| sort([axis, kind, order]) | Sort an array, in-place. | 
| squeeze([axis]) | Remove single-dimensional entries from the shape of a. | 
| std([axis, dtype, out, ddof, keepdims]) | Returns the standard deviation of the array elements along given axis. | 
| sum([axis, dtype, out, keepdims]) | Return the sum of the array elements over the given axis. | 
| swapaxes(axis1, axis2) | Return a view of the array with axis1andaxis2interchanged. | 
| take(indices[, axis, out, mode]) | Return an array formed from the elements of aat the given indices. | 
| to(unit[, equivalencies]) | Return a new Quantityobject with the specified unit. | 
| to_dqflag([name, minlen, dtype, round, …]) | Convert this series into a DataQualityFlag | 
| to_lal(*args, **kwargs) | Bogus function inherited from superclass, do not use. | 
| to_pycbc([copy]) | Convert this TimeSeriesinto a PyCBC | 
| to_value([unit, equivalencies]) | The numerical value, possibly in a different unit. | 
| tobytes([order]) | Construct Python bytes containing the raw data bytes in the array. | 
| tofile(fid[, sep, format]) | Write array to a file as text or binary (default). | 
| tolist() | Return the array as a (possibly nested) list. | 
| tostring([order]) | Construct Python bytes containing the raw data bytes in the array. | 
| trace([offset, axis1, axis2, dtype, out]) | Return the sum along diagonals of the array. | 
| transpose(*axes) | Returns a view of the array with axes transposed. | 
| update(other[, inplace]) | Update this series by appending new data from an other and dropping the same amount of data off the start. | 
| value_at(x) | Return the value of this Seriesat the givenxindexvalue | 
| var([axis, dtype, out, ddof, keepdims]) | Returns the variance of the array elements, along given axis. | 
| view([dtype, type]) | New view of array with the same data. | 
| write(target, *args, **kwargs) | Write this TimeSeriesto a file | 
| zip() | Zip the xindexandvaluearrays of thisSeries | 
Methods Documentation
abs(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])[source]¶Calculate the absolute value element-wise.
| Parameters: | x : array_like 
 out : ndarray, None, or tuple of ndarray and None, optional 
 where : array_like, optional 
 **kwargs 
 | 
|---|---|
| Returns: | absolute : ndarray 
 | 
Examples
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2,  1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308
Plot the function over [-10, 10]:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()
(png)
 
Plot the function over the complex plane:
>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray')
>>> plt.show()
(png)
 
all(axis=None, out=None, keepdims=False)¶Returns True if all elements evaluate to True.
Refer to numpy.all for full documentation.
See also
numpy.allany(axis=None, out=None, keepdims=False)¶Returns True if any of the elements of a evaluate to True.
Refer to numpy.any for full documentation.
See also
numpy.anyappend(other, gap='raise', inplace=True, pad=0, resize=True)[source]¶Connect another series onto the end of the current one.
| Parameters: | other :  
 gap :  
 inplace :  
 pad :  
 resize :  
 | 
|---|---|
| Returns: | series :  
 | 
argmax(axis=None, out=None)¶Return indices of the maximum values along the given axis.
Refer to numpy.argmax for full documentation.
See also
numpy.argmaxargmin(axis=None, out=None)¶Return indices of the minimum values along the given axis of a.
Refer to numpy.argmin for detailed documentation.
See also
numpy.argminargpartition(kth, axis=-1, kind='introselect', order=None)¶Returns the indices that would partition this array.
Refer to numpy.argpartition for full documentation.
New in version 1.8.0.
See also
numpy.argpartitionargsort(axis=-1, kind='quicksort', order=None)¶Returns the indices that would sort this array.
Refer to numpy.argsort for full documentation.
See also
numpy.argsortastype(dtype, order='K', casting='unsafe', subok=True, copy=True)¶Copy of the array, cast to a specified type.
| Parameters: | dtype : str or dtype 
 order : {‘C’, ‘F’, ‘A’, ‘K’}, optional 
 casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional 
 subok : bool, optional 
 copy : bool, optional 
 | 
|---|---|
| Returns: | arr_t : ndarray | 
| Raises: | ComplexWarning 
 | 
Notes
Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the casting was allowed even if the result was truncated.
Examples
>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. ,  2. ,  2.5])
>>> x.astype(int)
array([1, 2, 2])
byteswap(inplace)¶Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place.
| Parameters: | inplace : bool, optional 
 | 
|---|---|
| Returns: | out : ndarray 
 | 
Examples
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([  256,     1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']
Arrays of strings are not swapped
>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
      dtype='|S3')
choose(choices, out=None, mode='raise')¶Use an index array to construct a new array from a set of choices.
Refer to numpy.choose for full documentation.
See also
numpy.chooseclip(min=None, max=None, out=None)¶Return an array whose values are limited to [min, max].
One of max or min must be given.
Refer to numpy.clip for full documentation.
See also
numpy.clipcompress(condition, axis=None, out=None)¶Return selected slices of this array along given axis.
Refer to numpy.compress for full documentation.
See also
numpy.compressconj()¶Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See also
numpy.conjugateconjugate()¶Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See also
numpy.conjugatecopy(order='C')[source]¶Return a copy of the array.
| Parameters: | order : {‘C’, ‘F’, ‘A’, ‘K’}, optional 
 | 
|---|
See also
Examples
>>> x = np.array([[1,2,3],[4,5,6]], order='F')
>>> y = x.copy()
>>> x.fill(0)
>>> x
array([[0, 0, 0],
       [0, 0, 0]])
>>> y
array([[1, 2, 3],
       [4, 5, 6]])
>>> y.flags['C_CONTIGUOUS']
True
crop(start=None, end=None, copy=False)[source]¶Crop this series to the given x-axis extent.
| Parameters: | start :  
 end :  
 copy :  
 | 
|---|---|
| Returns: | series :  
 | 
Notes
If either start or end are outside of the original
Series span, warnings will be printed and the limits will
be restricted to the xspan
cumprod(axis=None, dtype=None, out=None)¶Return the cumulative product of the elements along the given axis.
Refer to numpy.cumprod for full documentation.
See also
numpy.cumprodcumsum(axis=None, dtype=None, out=None)¶Return the cumulative sum of the elements along the given axis.
Refer to numpy.cumsum for full documentation.
See also
numpy.cumsumdecompose(bases=[])¶Generates a new Quantity with the units
decomposed. Decomposed units have only irreducible units in
them (see astropy.units.UnitBase.decompose).
| Parameters: | bases : sequence of UnitBase, optional 
 | 
|---|---|
| Returns: | newq :  
 | 
diagonal(offset=0, axis1=0, axis2=1)¶Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed.
Refer to numpy.diagonal() for full documentation.
See also
numpy.diagonaldiff(n=1, axis=-1)[source]¶Calculate the n-th order discrete difference along given axis.
The first order difference is given by out[n] = a[n+1] - a[n] along
the given axis, higher order differences are calculated by using diff
recursively.
| Parameters: | n : int, optional 
 axis : int, optional 
 | 
|---|---|
| Returns: | diff :  
 | 
See also
numpy.diffdot(b, out=None)¶Dot product of two arrays.
Refer to numpy.dot for full documentation.
See also
numpy.dotExamples
>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[ 2.,  2.],
       [ 2.,  2.]])
This array method can be conveniently chained:
>>> a.dot(b).dot(b)
array([[ 8.,  8.],
       [ 8.,  8.]])
dump(file)¶Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
| Parameters: | file : str 
 | 
|---|
dumps()[source]¶Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.
| Parameters: | 
 | 
|---|
ediff1d(to_end=None, to_begin=None)¶fetch(channel, start, end, host=None, port=None, verbose=False, connection=None, verify=False, pad=None, allow_tape=None, type=None, dtype=None)[source]¶Fetch data from NDS
| Parameters: | 
 start :  
 
 host :  
 port :  
 verify :  
 connection :  
 verbose :  
 type :  
 dtype :  
 | 
|---|
fetch_open_data(ifo, start, end, sample_rate=4096, tag=None, version=None, format=None, host='https://losc.ligo.org', verbose=False, cache=None, **kwargs)[source]¶Fetch open-access data from the LIGO Open Science Center
| Parameters: | ifo :  
 start :  
 end :  
 sample_rate :  
 tag :  
 version :  
 format :  
 host :  
 verbose :  
 cache :  
 **kwargs 
 | 
|---|
Notes
StateVector data are not available in txt.gz format.
Examples
>>> from gwpy.timeseries import (TimeSeries, StateVector)
>>> print(TimeSeries.fetch_open_data('H1', 1126259446, 1126259478))
TimeSeries([  2.17704028e-19,  2.08763900e-19,  2.39681183e-19,
            ...,   3.55365541e-20,  6.33533516e-20,
              7.58121195e-20]
           unit: Unit(dimensionless),
           t0: 1126259446.0 s,
           dt: 0.000244140625 s,
           name: Strain,
           channel: None)
>>> print(StateVector.fetch_open_data('H1', 1126259446, 1126259478))
StateVector([127,127,127,127,127,127,127,127,127,127,127,127,
             127,127,127,127,127,127,127,127,127,127,127,127,
             127,127,127,127,127,127,127,127]
            unit: Unit(dimensionless),
            t0: 1126259446.0 s,
            dt: 1.0 s,
            name: Data quality,
            channel: None,
            bits: Bits(0: data present
                       1: passes cbc CAT1 test
                       2: passes cbc CAT2 test
                       3: passes cbc CAT3 test
                       4: passes burst CAT1 test
                       5: passes burst CAT2 test
                       6: passes burst CAT3 test,
                       channel=None,
                       epoch=1126259446.0))
For the StateVector, the naming of the bits will be
format-dependent, because they are recorded differently by LOSC
in different formats.
For events published in O2 and later, LOSC typically provides
multiple data sets containing the original ('C00') and cleaned
('CLN') data.
To select both data sets and plot a comparison, for example:
>>> orig = TimeSeries.fetch_open_data('H1', 1187008870, 1187008896,
...                                   tag='C00')
>>> cln = TimeSeries.fetch_open_data('H1', 1187008870, 1187008896,
...                                  tag='CLN')
>>> origasd = orig.asd(fftlength=4, overlap=2)
>>> clnasd = cln.asd(fftlength=4, overlap=2)
>>> plot = origasd.plot(label='Un-cleaned')
>>> ax = plot.gca()
>>> ax.plot(clnasd, label='Cleaned')
>>> ax.set_xlim(10, 1400)
>>> ax.set_ylim(1e-24, 1e-20)
>>> ax.legend()
>>> plot.show()
(png)
 
fill(value)¶Fill the array with a scalar value.
| Parameters: | value : scalar 
 | 
|---|
Examples
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1.,  1.])
find(channel, start, end, frametype=None, pad=None, dtype=None, nproc=1, verbose=False, **readargs)[source]¶Find and read data from frames for a channel
| Parameters: | 
 start :  
 
 frametype :  
 pad :  
 nproc :  
 dtype :  
 allow_tape :  
 verbose :  
 **readargs 
 | 
|---|
flatten(order='C')¶Return a copy of the array collapsed into one dimension.
| Parameters: | order : {‘C’, ‘F’, ‘A’, ‘K’}, optional 
 | 
|---|---|
| Returns: | y : ndarray 
 | 
See also
ravelflatExamples
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
from_nds2_buffer(buffer_, **metadata)[source]¶Construct a new TimeSeries from an nds2.buffer object
| Parameters: | buffer_ :  
 **metadata 
 | 
|---|---|
| Returns: | timeseries :  
 | 
Notes
This classmethod requires the nds2-client package
from_pycbc(pycbcseries, copy=True)[source]¶Convert a pycbc.types.timeseries.TimeSeries into a TimeSeries
| Parameters: | pycbcseries :  
 copy :  
 | 
|---|---|
| Returns: | timeseries :  
 | 
get(channel, start, end, pad=None, dtype=None, verbose=False, allow_tape=None, **kwargs)[source]¶Get data for this channel from frames or NDS
This method dynamically accesses either frames on disk, or a remote NDS2 server to find and return data for the given interval
| Parameters: | 
 start :  
 
 pad :  
 dtype :  
 nproc :  
 allow_tape :  
 verbose :  
 **kwargs | 
|---|
See also
TimeSeries.fetchTimeSeries.findgetfield(dtype, offset=0)¶Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.
| Parameters: | dtype : str or dtype 
 offset : int 
 | 
|---|
Examples
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j,  0.+0.j],
       [ 0.+0.j,  2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1.,  0.],
       [ 0.,  2.]])
By choosing an offset of 8 bytes we can select the complex part of the array for our view:
>>> x.getfield(np.float64, offset=8)
array([[ 1.,  0.],
   [ 0.,  4.]])
insert(obj, values, axis=None)¶Insert values along the given axis before the given indices and return
a new Quantity object.
This is a thin wrapper around the numpy.insert function.
| Parameters: | obj : int, slice or sequence of ints 
 values : array-like 
 axis : int, optional 
 | 
|---|---|
| Returns: | out :  
 | 
Examples
>>> import astropy.units as u
>>> q = [1, 2] * u.m
>>> q.insert(0, 50 * u.cm)
<Quantity [ 0.5,  1.,  2.] m>
>>> q = [[1, 2], [3, 4]] * u.m
>>> q.insert(1, [10, 20] * u.m, axis=0)
<Quantity [[  1.,  2.],
           [ 10., 20.],
           [  3.,  4.]] m>
>>> q.insert(1, 10 * u.m, axis=1)
<Quantity [[  1., 10.,  2.],
           [  3., 10.,  4.]] m>
is_compatible(other)[source]¶Check whether this series and other have compatible metadata
This method tests that the sample size, and the
unit match.
is_contiguous(other, tol=3.814697265625e-06)[source]¶Check whether other is contiguous with self.
| Parameters: | other :  
 tol :  
 | 
|---|---|
| Returns: | 1 
 -1 
 0 
 | 
Notes
if a raw numpy.ndarray is passed as other, with no metadata, then
the contiguity check will always pass
item(*args)¶Copy an element of an array to a standard Python scalar and return it.
| Parameters: | *args : Arguments (variable number and type) 
 | 
|---|---|
| Returns: | z : Standard Python scalar object 
 | 
Notes
When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.
Examples
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
       [2, 8, 3],
       [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3
itemset(*args)¶Insert scalar into an array (scalar is cast to array’s dtype, if possible)
There must be at least 1 argument, and define the last argument
as item.  Then, a.itemset(*args) is equivalent to but faster
than a[args] = item.  The item should be a scalar value and args
must select a single item in the array a.
| Parameters: | *args : Arguments 
 | 
|---|
Notes
Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this.  However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.
Examples
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
       [2, 8, 3],
       [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
       [2, 0, 3],
       [8, 5, 9]])
max(axis=None, out=None)¶Return the maximum along a given axis.
Refer to numpy.amax for full documentation.
See also
numpy.amaxmean(axis=None, dtype=None, out=None, keepdims=False)¶Returns the average of the array elements along given axis.
Refer to numpy.mean for full documentation.
See also
numpy.meanmedian(axis=None, **kwargs)[source]¶Compute the median along the specified axis.
Returns the median of the array elements.
| Parameters: | a : array_like 
 axis : {int, sequence of int, None}, optional 
 out : ndarray, optional 
 overwrite_input : bool, optional 
 keepdims : bool, optional 
 | 
|---|---|
| Returns: | median : ndarray 
 | 
See also
mean, percentile
Notes
Given a vector V of length N, the median of V is the
middle value of a sorted copy of V, V_sorted - i
e., V_sorted[(N-1)/2], when N is odd, and the average of the
two middle values of V_sorted when N is even.
Examples
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10,  7,  4],
       [ 3,  2,  1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([ 6.5,  4.5,  2.5])
>>> np.median(a, axis=1)
array([ 7.,  2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([ 6.5,  4.5,  2.5])
>>> m
array([ 6.5,  4.5,  2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([ 7.,  2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)
min(axis=None, out=None, keepdims=False)¶Return the minimum along a given axis.
Refer to numpy.amin for full documentation.
See also
numpy.aminnansum(axis=None, out=None, keepdims=False)¶newbyteorder(new_order='S')¶Return the array with the same data viewed with a different byte order.
Equivalent to:
arr.view(arr.dtype.newbytorder(new_order))
Changes are also made in all fields and sub-arrays of the array data type.
| Parameters: | new_order : string, optional 
 | 
|---|---|
| Returns: | new_arr : array 
 | 
nonzero()¶Return the indices of the elements that are non-zero.
Refer to numpy.nonzero for full documentation.
See also
numpy.nonzerooverride_unit(unit, parse_strict='raise')[source]¶Forcefully reset the unit of these data
Use of this method is discouraged in favour of to(),
which performs accurate conversions from one unit to another.
The method should really only be used when the original unit of the
array is plain wrong.
| Parameters: | 
 parse_strict :  
 | 
|---|---|
| Raises: | ValueError 
 | 
pad(pad_width, **kwargs)[source]¶Pad this series to a new size
| Parameters: | pad_width :  
 **kwargs 
 | 
|---|---|
| Returns: | series :  
 | 
See also
numpy.padpartition(kth, axis=-1, kind='introselect', order=None)¶Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.
New in version 1.8.0.
| Parameters: | kth : int or sequence of ints 
 axis : int, optional 
 kind : {‘introselect’}, optional 
 order : str or list of str, optional 
 | 
|---|
See also
numpy.partitionargpartitionsortNotes
See np.partition for notes on the different algorithms.
Examples
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])
>>> a.partition((1, 3))
array([1, 2, 3, 4])
plot(**kwargs)[source]¶Plot the data for this timeseries
All keywords are passed to TimeSeriesPlot
| Returns: | plot :  
 | 
|---|
See also
matplotlib.pyplot.figurematplotlib.figure.Figure.add_subplotmatplotlib.axes.Axes.plotprepend(other, gap='raise', inplace=True, pad=0, resize=True)[source]¶Connect another series onto the start of the current one.
| Parameters: | other :  
 gap :  
 inplace :  
 pad :  
 | 
|---|---|
| Returns: | series :  
 | 
prod(axis=None, dtype=None, out=None, keepdims=False)¶Return the product of the array elements over the given axis
Refer to numpy.prod for full documentation.
See also
numpy.prodptp(axis=None, out=None)¶Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy.ptp for full documentation.
See also
numpy.ptpput(indices, values, mode='raise')¶Set a.flat[n] = values[n] for all n in indices.
Refer to numpy.put for full documentation.
See also
numpy.putravel([order])¶Return a flattened array.
Refer to numpy.ravel for full documentation.
See also
numpy.ravelndarray.flatread(source, *args, **kwargs)[source]¶Read data into a TimeSeries
Arguments and keywords depend on the output format, see the online documentation for full details for each format, the parameters below are common to most formats.
| Parameters: | 
 start :  
 end :  
 format :  
 nproc :  
 gap :  
 pad :  
 | 
|---|
Notes
The available built-in formats are:
| Format | Read | Write | Auto-identify | Deprecated | 
|---|---|---|---|---|
| ascii.losc | Yes | No | No | |
| csv | Yes | Yes | Yes | |
| framecpp | Yes | Yes | No | |
| gwf | Yes | Yes | Yes | |
| gwf.framecpp | Yes | Yes | No | |
| gwf.lalframe | Yes | Yes | No | |
| hdf5 | Yes | Yes | Yes | |
| hdf5.losc | Yes | No | No | |
| lalframe | Yes | Yes | No | |
| txt | Yes | Yes | Yes | |
| wav | Yes | No | No | |
| losc | Yes | No | No | Yes | 
Deprecated format names like aastex will be removed in a future version. Use the full 
name (e.g. ascii.aastex) instead.
repeat(repeats, axis=None)¶Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also
numpy.repeatreshape(shape, order='C')¶Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See also
numpy.reshaperesize(new_shape, refcheck=True)¶Change shape and size of array in-place.
| Parameters: | new_shape : tuple of ints, or  
 refcheck : bool, optional 
 | 
|---|---|
| Returns: | 
 | 
| Raises: | ValueError 
 SystemError 
 | 
See also
resizeNotes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.
The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.
Examples
Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:
>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
       [1]])
>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
       [2]])
Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
       [3, 0, 0]])
Referencing an array prevents resizing…
>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...
Unless refcheck is False:
>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])
round(decimals=0, out=None)¶Return a with each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.
See also
numpy.aroundsearchsorted(v, side='left', sorter=None)¶Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also
numpy.searchsortedsetfield(val, dtype, offset=0)¶Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dtype and beginning offset
bytes into the field.
| Parameters: | val : object 
 dtype : dtype object 
 offset : int, optional 
 | 
|---|---|
| Returns: | 
 | 
See also
Examples
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
       [3, 3, 3],
       [3, 3, 3]])
>>> x
array([[  1.00000000e+000,   1.48219694e-323,   1.48219694e-323],
       [  1.48219694e-323,   1.00000000e+000,   1.48219694e-323],
       [  1.48219694e-323,   1.48219694e-323,   1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
setflags(write=None, align=None, uic=None)¶Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)
| Parameters: | write : bool, optional 
 align : bool, optional 
 uic : bool, optional 
 | 
|---|
Notes
Array flags provide information about how the memory area used for the array is to be interpreted. There are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITEABLE, and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);
UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is deallocated, the base array will be updated with the contents of this array.
All flags can be accessed using their first (upper case) letter as well as the full name.
Examples
>>> y
array([[3, 1, 7],
       [2, 0, 0],
       [8, 5, 9]])
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : False
  ALIGNED : False
  UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True
shift(delta)[source]¶Shift this TimeSeries forward in time by delta
This modifies the series in-place.
| Parameters: | 
 | 
|---|
Examples
>>> from gwpy.timeseries import TimeSeries
>>> a = TimeSeries([1, 2, 3, 4, 5], t0=0, dt=1)
>>> print(a.t0)
0.0 s
>>> a.shift(5)
>>> print(a.t0)
5.0 s
>>> a.shift('-1 hour')
-3595.0 s
sort(axis=-1, kind='quicksort', order=None)¶Sort an array, in-place.
| Parameters: | axis : int, optional 
 kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional 
 order : str or list of str, optional 
 | 
|---|
See also
numpy.sortargsortlexsortsearchsortedpartitionNotes
See sort for notes on the different sorting algorithms.
Examples
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
       [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
       [1, 4]])
Use the order keyword to specify a field to use when sorting a
structured array:
>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
      dtype=[('x', '|S1'), ('y', '<i4')])
squeeze(axis=None)¶Remove single-dimensional entries from the shape of a.
Refer to numpy.squeeze for full documentation.
See also
numpy.squeezestd(axis=None, dtype=None, out=None, ddof=0, keepdims=False)¶Returns the standard deviation of the array elements along given axis.
Refer to numpy.std for full documentation.
See also
numpy.stdsum(axis=None, dtype=None, out=None, keepdims=False)¶Return the sum of the array elements over the given axis.
Refer to numpy.sum for full documentation.
See also
numpy.sumswapaxes(axis1, axis2)¶Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also
numpy.swapaxestake(indices, axis=None, out=None, mode='raise')¶Return an array formed from the elements of a at the given indices.
Refer to numpy.take for full documentation.
See also
numpy.taketo(unit, equivalencies=[])¶Return a new Quantity object with the specified unit.
| Parameters: | unit :  equivalencies : list of equivalence pairs, optional 
 | 
|---|
See also
to_valueto_dqflag(name=None, minlen=1, dtype=None, round=False, label=None, description=None)[source]¶Convert this series into a DataQualityFlag
Each contiguous set of True values are grouped as a
Segment running from the GPS time the first
found True, to the GPS time of the next False (or the end
of the series)
| Parameters: | minlen :  
 round :  
 | 
|---|---|
| Returns: | dqflag :  
 | 
to_pycbc(copy=True)[source]¶Convert this TimeSeries into a PyCBC
TimeSeries
| Parameters: | copy :  
 | 
|---|---|
| Returns: | timeseries :  
 | 
to_value(unit=None, equivalencies=[])¶The numerical value, possibly in a different unit.
| Parameters: | unit :  
 equivalencies : list of equivalence pairs, optional 
 | 
|---|---|
| Returns: | value :  
 | 
See also
totobytes(order='C')¶Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.
New in version 1.9.0.
| Parameters: | order : {‘C’, ‘F’, None}, optional 
 | 
|---|---|
| Returns: | s : bytes 
 | 
Examples
>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'
tofile(fid, sep="", format="%s")¶Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().
| Parameters: | fid : file or str 
 sep : str 
 format : str 
 | 
|---|
Notes
This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.
tolist()¶Return the array as a (possibly nested) list.
Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible Python type.
| Parameters: | 
 | 
|---|---|
| Returns: | y : list 
 | 
Notes
The array may be recreated, a = np.array(a.tolist()).
Examples
>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]
tostring(order='C')[source]¶Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.
This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.
| Parameters: | order : {‘C’, ‘F’, None}, optional 
 | 
|---|---|
| Returns: | s : bytes 
 | 
Examples
>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'
trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)¶Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.
See also
numpy.tracetranspose(*axes)¶Returns a view of the array with axes transposed.
For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).
| Parameters: | axes : None, tuple of ints, or  
 | 
|---|---|
| Returns: | out : ndarray 
 | 
See also
ndarray.TExamples
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
       [3, 4]])
>>> a.transpose()
array([[1, 3],
       [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
       [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
       [2, 4]])
update(other, inplace=True)[source]¶Update this series by appending new data from an other and dropping the same amount of data off the start.
This is a convenience method that just calls append with
resize=False.
value_at(x)[source]¶Return the value of this Series at the given xindex value
| Parameters: | 
 | 
|---|---|
| Returns: | y :  
 | 
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)¶Returns the variance of the array elements, along given axis.
Refer to numpy.var for full documentation.
See also
numpy.varview(dtype=None, type=None)¶New view of array with the same data.
| Parameters: | dtype : data-type or ndarray sub-class, optional 
 type : Python type, optional 
 | 
|---|
Notes
a.view() is used two different ways:
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type.  This can cause a
reinterpretation of the bytes of memory.
a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.)  This does not cause a reinterpretation of the
memory.
For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.
Examples
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>
Creating a view on a structured array so it can be used in calculations
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
       [3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2.,  3.])
Making changes to the view changes the underlying array
>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]
Using a view to convert an array to a recarray:
>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)
Views share data:
>>> x[0] = (9, 10)
>>> z[0]
(9, 10)
Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
       [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
       [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
write(target, *args, **kwargs)[source]¶Write this TimeSeries to a file
| Parameters: | target :  
 format :  
 | 
|---|
Notes
The available built-in formats are:
| Format | Read | Write | Auto-identify | 
|---|---|---|---|
| csv | Yes | Yes | Yes | 
| framecpp | Yes | Yes | No | 
| gwf | Yes | Yes | Yes | 
| gwf.framecpp | Yes | Yes | No | 
| gwf.lalframe | Yes | Yes | No | 
| hdf5 | Yes | Yes | Yes | 
| lalframe | Yes | Yes | No | 
| txt | Yes | Yes | Yes | 
| wav | Yes | Yes | No | 
zip()[source]¶Zip the xindex and value arrays of this Series
| Returns: | stacked : 2-d  
 | 
|---|
Examples
>>> a = Series([0, 2, 4, 6, 8], xindex=[-5, -4, -3, -2, -1])
>>> a.zip()
array([[-5.,  0.],
       [-4.,  2.],
       [-3.,  4.],
       [-2.,  6.],
       [-1.,  8.]])
diff(n=1, axis=-1)[source]Calculate the n-th order discrete difference along given axis.
The first order difference is given by out[n] = a[n+1] - a[n] along
the given axis, higher order differences are calculated by using diff
recursively.
| Parameters: | n : int, optional 
 axis : int, optional 
 | 
|---|---|
| Returns: | diff :  
 | 
See also
numpy.diffoverride_unit(unit, parse_strict='raise')[source]Forcefully reset the unit of these data
Use of this method is discouraged in favour of to(),
which performs accurate conversions from one unit to another.
The method should really only be used when the original unit of the
array is plain wrong.
| Parameters: | 
 parse_strict :  
 | 
|---|---|
| Raises: | ValueError 
 | 
to_dqflag(name=None, minlen=1, dtype=None, round=False, label=None, description=None)[source]Convert this series into a DataQualityFlag
Each contiguous set of True values are grouped as a
Segment running from the GPS time the first
found True, to the GPS time of the next False (or the end
of the series)
| Parameters: | minlen :  
 round :  
 | 
|---|---|
| Returns: | dqflag :  
 | 
to_lal(*args, **kwargs)[source]Bogus function inherited from superclass, do not use.