gwpy.table.
EventTable
(data=None, masked=None, names=None, dtype=None, meta=None, copy=True, rows=None, copy_indices=True, **kwargs)[source]¶Bases: astropy.table.table.Table
A container for a table of events
This differs from the basic Table
in two ways
EventTable.read
and EventTable.write
EventColumn
type, which provides
methods for filtering based on a SegmentList
(not
specifically time segments)See also
astropy.table.Table
EventTable
Methods Summary
add_column (col[, index, name, rename_duplicate]) |
Add a new Column object col to the table. |
add_columns (cols[, indexes, names, copy, …]) |
Add a list of new Column objects cols to the table. |
add_index (colnames[, engine, unique]) |
Insert a new index among one or more columns. |
add_row ([vals, mask]) |
Add a new row to the end of the table. |
argsort ([keys, kind]) |
Return the indices which would sort the table according to one or more key columns. |
as_array ([keep_byteorder]) |
Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate). |
binned_event_rates (stride, column, bins[, …]) |
Calculate an event rate TimeSeriesDict over a number of bins. |
convert_bytestring_to_unicode ([python3_only]) |
Convert bytestring columns (dtype.kind=’S’) to unicode (dtype.kind=’U’) assuming ASCII encoding. |
convert_unicode_to_bytestring ([python3_only]) |
Convert ASCII-only unicode columns (dtype.kind=’U’) to bytestring (dtype.kind=’S’). |
copy ([copy_data]) |
Return a copy of the table. |
event_rate (stride[, start, end, timecolumn]) |
Calculate the rate TimeSeries for this Table . |
fetch (format_, *args, **kwargs) |
Fetch a table of events from a database |
field (item) |
Return column[item] for recarray compatibility. |
filled ([fill_value]) |
Return a copy of self, with masked values filled. |
filter (*column_filters) |
Apply one or more column slice filters to this EventTable |
from_pandas (dataframe) |
Create a Table from a pandas.DataFrame instance |
get_column (name) |
Return the Column with the given name |
group_by (keys) |
Group this table by the specified keys |
hist (column, **kwargs) |
Generate a HistogramPlot of this Table . |
index_column (name) |
Return the positional index of column name . |
index_mode (mode) |
Return a context manager for an indexing mode. |
insert_row (index[, vals, mask]) |
Add a new row before the given index position in the table. |
itercols () |
Iterate over the columns of this table. |
keep_columns (names) |
Keep only the columns specified (remove the others). |
keys () |
|
more ([max_lines, max_width, show_name, …]) |
Interactively browse table with a paging interface. |
pformat ([max_lines, max_width, show_name, …]) |
Return a list of lines for the formatted string representation of the table. |
plot (x, y, *args, **kwargs) |
Generate an EventTablePlot of this Table . |
pprint ([max_lines, max_width, show_name, …]) |
Print a formatted string representation of the table. |
read (source, *args, **kwargs) |
Read data into an EventTable |
remove_column (name) |
Remove a column from the table. |
remove_columns (names) |
Remove several columns from the table. |
remove_indices (colname) |
Remove all indices involving the given column. |
remove_row (index) |
Remove a row from the table. |
remove_rows (row_specifier) |
Remove rows from the table. |
rename_column (name, new_name) |
Rename a column. |
replace_column (name, col) |
Replace column name with the new col object. |
reverse () |
Reverse the row order of table rows. |
show_in_browser ([max_lines, jsviewer, …]) |
Render the table in HTML and show it in a web browser. |
show_in_notebook ([tableid, css, …]) |
Render the table in HTML and show it in the IPython notebook. |
sort ([keys]) |
Sort the table according to one or more keys. |
to_pandas () |
Return a pandas.DataFrame instance |
write (target, *args, **kwargs) |
Write this table to a file |
Methods Documentation
add_column
(col, index=None, name=None, rename_duplicate=False)¶Add a new Column object col
to the table. If index
is supplied then insert column before index
position
in the list of columns, otherwise append column to the end
of the list.
Parameters: | col : Column
index : int or
name : str
rename_duplicate : bool
|
---|
Examples
Create a table with two columns ‘a’ and ‘b’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
>>> print(t)
a b
--- ---
1 0.1
2 0.2
3 0.3
Create a third column ‘c’ and append it to the end of the table:
>>> col_c = Column(name='c', data=['x', 'y', 'z'])
>>> t.add_column(col_c)
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Add column ‘d’ at position 1. Note that the column is inserted before the given index:
>>> col_d = Column(name='d', data=['a', 'b', 'c'])
>>> t.add_column(col_d, 1)
>>> print(t)
a d b c
--- --- --- ---
1 a 0.1 x
2 b 0.2 y
3 c 0.3 z
Add second column named ‘b’ with rename_duplicate:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
>>> col_b = Column(name='b', data=[1.1, 1.2, 1.3])
>>> t.add_column(col_b, rename_duplicate=True)
>>> print(t)
a b b_1
--- --- ---
1 0.1 1.1
2 0.2 1.2
3 0.3 1.3
Add an unnamed column or mixin object in the table using a default name
or by specifying an explicit name with name
. Name can also be overridden:
>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b'))
>>> col_c = Column(data=['x', 'y'])
>>> t.add_column(col_c)
>>> t.add_column(col_c, name='c')
>>> col_b = Column(name='b', data=[1.1, 1.2])
>>> t.add_column(col_b, name='d')
>>> print(t)
a b col2 c d
--- --- ---- --- ---
1 0.1 x x 1.1
2 0.2 y y 1.2
To add several columns use add_columns.
add_columns
(cols, indexes=None, names=None, copy=True, rename_duplicate=False)¶Add a list of new Column objects cols
to the table. If a
corresponding list of indexes
is supplied then insert column
before each index
position in the original list of columns,
otherwise append columns to the end of the list.
Parameters: | cols : list of Columns
indexes : list of ints or
names : list of str
copy : bool
rename_duplicate : bool
|
---|
Examples
Create a table with two columns ‘a’ and ‘b’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
>>> print(t)
a b
--- ---
1 0.1
2 0.2
3 0.3
Create column ‘c’ and ‘d’ and append them to the end of the table:
>>> col_c = Column(name='c', data=['x', 'y', 'z'])
>>> col_d = Column(name='d', data=['u', 'v', 'w'])
>>> t.add_columns([col_c, col_d])
>>> print(t)
a b c d
--- --- --- ---
1 0.1 x u
2 0.2 y v
3 0.3 z w
Add column ‘c’ at position 0 and column ‘d’ at position 1. Note that the columns are inserted before the given position:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
>>> col_c = Column(name='c', data=['x', 'y', 'z'])
>>> col_d = Column(name='d', data=['u', 'v', 'w'])
>>> t.add_columns([col_c, col_d], [0, 1])
>>> print(t)
c a d b
--- --- --- ---
x 1 u 0.1
y 2 v 0.2
z 3 w 0.3
Add second column ‘b’ and column ‘c’ with rename_duplicate
:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
>>> col_b = Column(name='b', data=[1.1, 1.2, 1.3])
>>> col_c = Column(name='c', data=['x', 'y', 'z'])
>>> t.add_columns([col_b, col_c], rename_duplicate=True)
>>> print(t)
a b b_1 c
--- --- --- ---
1 0.1 1.1 x
2 0.2 1.2 y
3 0.3 1.3 z
Add unnamed columns or mixin objects in the table using default names
or by specifying explicit names with names
. Names can also be overridden:
>>> t = Table()
>>> col_a = Column(data=['x', 'y'])
>>> col_b = Column(name='b', data=['u', 'v'])
>>> t.add_columns([col_a, col_b])
>>> t.add_columns([col_a, col_b], names=['c', 'd'])
>>> print(t)
col0 b c d
---- --- --- ---
x u x u
y v y v
add_index
(colnames, engine=None, unique=False)¶Insert a new index among one or more columns. If there are no indices, make this index the primary table index.
Parameters: | colnames : str or list
engine : type or None
unique : bool
|
---|
add_row
(vals=None, mask=None)¶Add a new row to the end of the table.
The vals
argument can be:
None
This method requires that the Table object “owns” the underlying array data. In particular one cannot add a row to a Table that was initialized with copy=False from an existing array.
The mask
attribute should give (if desired) the mask for the
values. The type of the mask should match that of the values, i.e. if
vals
is an iterable, then mask
should also be an iterable
with the same length, and if vals
is a mapping, then mask
should be a dictionary.
Parameters: | vals : tuple, list, dict or
mask : tuple, list, dict or
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1,2],[4,5],[7,8]], names=('a','b','c'))
>>> print(t)
a b c
--- --- ---
1 4 7
2 5 8
Adding a new row with entries ‘3’ in ‘a’, ‘6’ in ‘b’ and ‘9’ in ‘c’:
>>> t.add_row([3,6,9])
>>> print(t)
a b c
--- --- ---
1 4 7
2 5 8
3 6 9
argsort
(keys=None, kind=None)¶Return the indices which would sort the table according to one or
more key columns. This simply calls the numpy.argsort
function on
the table with the order
parameter set to keys
.
Parameters: | keys : str or list of str
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
|
---|---|
Returns: | index_array : ndarray, int
|
as_array
(keep_byteorder=False)¶Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate).
Parameters: | keep_byteorder : bool, optional
|
---|---|
Returns: | table_array : np.ndarray (unmasked) or np.ma.MaskedArray (masked)
|
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]¶Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates : ~gwpy.timeseries.TimeSeriesDict`
|
convert_bytestring_to_unicode
(python3_only=False)¶Convert bytestring columns (dtype.kind=’S’) to unicode (dtype.kind=’U’) assuming ASCII encoding.
Internally this changes string columns to represent each character in the string with a 4-byte UCS-4 equivalent, so it is inefficient for memory but allows Python 3 scripts to manipulate string arrays with natural syntax.
The python3_only
parameter is provided as a convenience so that code can
be written in a Python 2 / 3 compatible way:
>>> t = Table.read('my_data.fits')
>>> t.convert_bytestring_to_unicode(python3_only=True)
Parameters: | python3_only : bool
|
---|
convert_unicode_to_bytestring
(python3_only=False)¶Convert ASCII-only unicode columns (dtype.kind=’U’) to bytestring (dtype.kind=’S’).
When exporting a unicode string array to a file in Python 3, it may be desirable to encode unicode columns as bytestrings. This routine takes advantage of numpy automated conversion which works for strings that are pure ASCII.
The python3_only
parameter is provided as a convenience so that code can
be written in a Python 2 / 3 compatible way:
>>> t.convert_unicode_to_bytestring(python3_only=True)
>>> t.write('my_data.fits')
Parameters: | python3_only : bool
|
---|
copy
(copy_data=True)¶Return a copy of the table.
Parameters: | copy_data : bool
.. note::
|
---|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]¶Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
fetch
(format_, *args, **kwargs)[source]¶Fetch a table of events from a database
Parameters: | format :
*args
columns :
selection :
**kwargs
|
---|---|
Returns: | table :
|
Notes
The available named formats are:
Format | Basic usage |
---|---|
gravityspy | fetch('gravityspy', tablename) |
hacr | fetch('hacr', channel, gpsstart, gpstop) |
Examples
>>> from gwpy.table import EventTable
To download a table of all blip glitches from the Gravity Spy database:
>>> EventTable.fetch('gravityspy', 'glitches', selection='Label=Blip')
To download a table from any SQL-type server
>>> from sqlalchemy.engine import create_engine
>>> engine = create_engine(...)
>>> EventTable.fetch(engine, 'mytable')
field
(item)¶Return column[item] for recarray compatibility.
filled
(fill_value=None)¶Return a copy of self, with masked values filled.
If input fill_value
supplied then that value is used for all
masked entries in the table. Otherwise the individual
fill_value
defined for each table column is used.
Parameters: | fill_value : str
|
---|---|
Returns: | filled_table : Table
|
filter
(*column_filters)[source]¶Apply one or more column slice filters to this EventTable
Multiple column filters can be given, and will be applied concurrently
Parameters: |
|
---|---|
Returns: | table :
|
Notes
See Filtering tables for more details on using filter tuples
Examples
To filter an existing EventTable
(table
) to include only
rows with snr
greater than 10
, and frequency
less than
1000
:
>>> table.filter('snr>10', 'frequency<1000')
Custom operations can be defined using filter tuple definitions:
>>> from gwpy.table.filters import in_segmentlist
>>> filter(my_table, ('time', in_segmentlist, segs))
from_pandas
(dataframe)¶Create a Table
from a pandas.DataFrame
instance
Parameters: | dataframe :
|
---|---|
Returns: | table :
|
get_column
(name)[source]¶Return the Column
with the given name
This method is provided only for compatibility with the
glue.ligolw.table.Table
.
Parameters: | name :
|
---|---|
Returns: |
|
Raises: | KeyError
|
group_by
(keys)¶Group this table by the specified keys
This effectively splits the table into groups which correspond to
unique values of the keys
grouping object. The output is a new
TableGroups
which contains a copy of this table but sorted by row
according to keys
.
The keys
input to group_by
can be specified in different ways:
- String or list of strings corresponding to table column name(s)
- Numpy array (homogeneous or structured) with same length as this table
Table
with same length as this table
Parameters: | keys : str, list of str, numpy array, or
|
---|---|
Returns: | out :
|
hist
(column, **kwargs)[source]¶Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs
|
---|---|
Returns: | plot :
|
index_column
(name)¶Return the positional index of column name
.
Parameters: | name : str
|
---|---|
Returns: | index : int
|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Get index of column ‘b’ of the table:
>>> t.index_column('b')
1
index_mode
(mode)¶Return a context manager for an indexing mode.
Parameters: | mode : str
|
---|
insert_row
(index, vals=None, mask=None)¶Add a new row before the given index
position in the table.
The vals
argument can be:
None
The mask
attribute should give (if desired) the mask for the
values. The type of the mask should match that of the values, i.e. if
vals
is an iterable, then mask
should also be an iterable
with the same length, and if vals
is a mapping, then mask
should be a dictionary.
Parameters: | vals : tuple, list, dict or
mask : tuple, list, dict or
|
---|
itercols
()¶Iterate over the columns of this table.
Examples
To iterate over the columns of a table:
>>> t = Table([[1], [2]])
>>> for col in t.itercols():
... print(col)
col0
----
1
col1
----
2
Using itercols()
is similar to for col in t.columns.values()
but is syntactically preferred.
keep_columns
(names)¶Keep only the columns specified (remove the others).
Parameters: | names : list
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Specifying only a single column name keeps only this column. Keep only column ‘a’ of the table:
>>> t.keep_columns('a')
>>> print(t)
a
---
1
2
3
Specifying a list of column names is keeps is also possible. Keep columns ‘a’ and ‘c’ of the table:
>>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> t.keep_columns(['a', 'c'])
>>> print(t)
a c
--- ---
1 x
2 y
3 z
keys
()¶more
(max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False)¶Interactively browse table with a paging interface.
Supported keys:
f, <space> : forward one page
b : back one page
r : refresh same page
n : next row
p : previous row
< : go to beginning
> : go to end
q : quit browsing
h : print this help
Parameters: | max_lines : int
max_width : int or
show_name : bool
show_unit : bool
show_dtype : bool
|
---|
pformat
(max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, html=False, tableid=None, align=None, tableclass=None)¶Return a list of lines for the formatted string representation of the table.
If no value of max_lines
is supplied then the height of the
screen terminal is used to set max_lines
. If the terminal
height cannot be determined then the default is taken from the
configuration item astropy.conf.max_lines
. If a negative
value of max_lines
is supplied then there is no line limit
applied.
The same applies for max_width
except the configuration item is
astropy.conf.max_width
.
Parameters: | max_lines : int or
max_width : int or
show_name : bool
show_unit : bool
show_dtype : bool
html : bool
tableid : str or
align : str or list or tuple or
tableclass : str or list of str or
|
---|---|
Returns: | lines : list
|
plot
(x, y, *args, **kwargs)[source]¶Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs
|
---|---|
Returns: | plot :
|
See also
matplotlib.pyplot.figure
matplotlib.figure.Figure.add_subplot
gwpy.plotter.EventTableAxes.plot_table
scatter()
)pprint
(max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, align=None)¶Print a formatted string representation of the table.
If no value of max_lines
is supplied then the height of the
screen terminal is used to set max_lines
. If the terminal
height cannot be determined then the default is taken from the
configuration item astropy.conf.max_lines
. If a negative
value of max_lines
is supplied then there is no line limit
applied.
The same applies for max_width except the configuration item is
astropy.conf.max_width
.
Parameters: | max_lines : int
max_width : int or
show_name : bool
show_unit : bool
show_dtype : bool
align : str or list or tuple or
|
---|
read
(source, *args, **kwargs)[source]¶Read data into an EventTable
Parameters: |
*args
format :
selection :
nproc :
verbose :
.. note::
|
---|---|
Returns: |
|
Raises: | astropy.io.registry.IORegistryError
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii.cwb | Yes | No | No |
ascii.omega | Yes | No | No |
gwf | Yes | No | No |
hdf5.pycbc_live | Yes | No | Yes |
ligolw | Yes | Yes | Yes |
root | Yes | Yes | Yes |
root.cwb | Yes | No | No |
root.omicron | Yes | No | No |
remove_column
(name)¶Remove a column from the table.
This can also be done with:
del table[name]
Parameters: | name : str
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Remove column ‘b’ from the table:
>>> t.remove_column('b')
>>> print(t)
a c
--- ---
1 x
2 y
3 z
To remove several columns at the same time use remove_columns.
remove_columns
(names)¶Remove several columns from the table.
Parameters: | names : list
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Remove columns ‘b’ and ‘c’ from the table:
>>> t.remove_columns(['b', 'c'])
>>> print(t)
a
---
1
2
3
Specifying only a single column also works. Remove column ‘b’ from the table:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> t.remove_columns('b')
>>> print(t)
a c
--- ---
1 x
2 y
3 z
This gives the same as using remove_column.
remove_indices
(colname)¶Remove all indices involving the given column. If the primary index is removed, the new primary index will be the most recently added remaining index.
Parameters: | colname : str
|
---|
remove_row
(index)¶Remove a row from the table.
Parameters: | index : int
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Remove row 1 from the table:
>>> t.remove_row(1)
>>> print(t)
a b c
--- --- ---
1 0.1 x
3 0.3 z
To remove several rows at the same time use remove_rows.
remove_rows
(row_specifier)¶Remove rows from the table.
Parameters: | row_specifier : slice, int, or array of ints
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
Remove rows 0 and 2 from the table:
>>> t.remove_rows([0, 2])
>>> print(t)
a b c
--- --- ---
2 0.2 y
Note that there are no warnings if the slice operator extends outside the data:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']],
... names=('a', 'b', 'c'))
>>> t.remove_rows(slice(10, 20, 1))
>>> print(t)
a b c
--- --- ---
1 0.1 x
2 0.2 y
3 0.3 z
rename_column
(name, new_name)¶Rename a column.
This can also be done directly with by setting the name
attribute
for a column:
table[name].name = new_name
TODO: this won’t work for mixins
Parameters: | name : str
new_name : str
|
---|
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1,2],[3,4],[5,6]], names=('a','b','c'))
>>> print(t)
a b c
--- --- ---
1 3 5
2 4 6
Renaming column ‘a’ to ‘aa’:
>>> t.rename_column('a' , 'aa')
>>> print(t)
aa b c
--- --- ---
1 3 5
2 4 6
replace_column
(name, col)¶Replace column name
with the new col
object.
Parameters: | name : str
col : column object (list, ndarray, Column, etc)
|
---|
Examples
Replace column ‘a’ with a float version of itself:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b'))
>>> float_a = t['a'].astype(float)
>>> t.replace_column('a', float_a)
reverse
()¶Reverse the row order of table rows. The table is reversed in place and there are no function arguments.
Examples
Create a table with three columns:
>>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'],
... [12,15,18]], names=('firstname','name','tel'))
>>> print(t)
firstname name tel
--------- ------- ---
Max Miller 12
Jo Miller 15
John Jackson 18
Reversing order:
>>> t.reverse()
>>> print(t)
firstname name tel
--------- ------- ---
John Jackson 18
Jo Miller 15
Max Miller 12
show_in_browser
(max_lines=5000, jsviewer=False, browser=u'default', jskwargs={u'use_local_files': True}, tableid=None, table_class=u'display compact', css=None, show_row_index=u'idx')¶Render the table in HTML and show it in a web browser.
Parameters: | max_lines : int
jsviewer : bool
browser : str
jskwargs : dict
tableid : str or
table_class : str or
css : string
show_row_index : str or False
|
---|
show_in_notebook
(tableid=None, css=None, display_length=50, table_class=u'astropy-default', show_row_index=u'idx')¶Render the table in HTML and show it in the IPython notebook.
Parameters: | tableid : str or
table_class : str or
css : string
display_length : int, optional
show_row_index : str or False
|
---|
Notes
Currently, unlike show_in_browser
(with jsviewer=True
), this
method needs to access online javascript code repositories. This is due
to modern browsers’ limitations on accessing local files. Hence, if you
call this method while offline (and don’t have a cached version of
jquery and jquery.dataTables), you will not get the jsviewer features.
sort
(keys=None)¶Sort the table according to one or more keys. This operates on the existing table and does not return a new table.
Parameters: | keys : str or list of str
|
---|
Examples
Create a table with 3 columns:
>>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'],
... [12,15,18]], names=('firstname','name','tel'))
>>> print(t)
firstname name tel
--------- ------- ---
Max Miller 12
Jo Miller 15
John Jackson 18
Sorting according to standard sorting rules, first ‘name’ then ‘firstname’:
>>> t.sort(['name','firstname'])
>>> print(t)
firstname name tel
--------- ------- ---
John Jackson 18
Jo Miller 15
Max Miller 12
to_pandas
()¶Return a pandas.DataFrame
instance
Returns: | dataframe :
|
---|---|
Raises: | ImportError
ValueError
|
write
(target, *args, **kwargs)[source]¶Write this table to a file
Parameters: | target: `str`
*args
format :
**kwargs
|
---|---|
Raises: | astropy.io.registry.IORegistryError
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
gwf | Yes | Yes | No |
ligolw | Yes | Yes | Yes |
root | Yes | Yes | Yes |
binned_event_rates
(stride, column, bins, operator='>=', start=None, end=None, timecolumn='time')[source]Calculate an event rate TimeSeriesDict
over
a number of bins.
Parameters: | stride :
column :
bins :
start :
end :
timecolumn :
|
---|---|
Returns: | rates : ~gwpy.timeseries.TimeSeriesDict`
|
event_rate
(stride, start=None, end=None, timecolumn='time')[source]Calculate the rate TimeSeries
for this Table
.
Parameters: | stride :
start :
end :
timecolumn :
|
---|---|
Returns: | rate :
|
fetch
(format_, *args, **kwargs)[source]Fetch a table of events from a database
Parameters: | format :
*args
columns :
selection :
**kwargs
|
---|---|
Returns: | table :
|
Notes
The available named formats are:
Format | Basic usage |
---|---|
gravityspy | fetch('gravityspy', tablename) |
hacr | fetch('hacr', channel, gpsstart, gpstop) |
Examples
>>> from gwpy.table import EventTable
To download a table of all blip glitches from the Gravity Spy database:
>>> EventTable.fetch('gravityspy', 'glitches', selection='Label=Blip')
To download a table from any SQL-type server
>>> from sqlalchemy.engine import create_engine
>>> engine = create_engine(...)
>>> EventTable.fetch(engine, 'mytable')
filter
(*column_filters)[source]Apply one or more column slice filters to this EventTable
Multiple column filters can be given, and will be applied concurrently
Parameters: |
|
---|---|
Returns: | table :
|
Notes
See Filtering tables for more details on using filter tuples
Examples
To filter an existing EventTable
(table
) to include only
rows with snr
greater than 10
, and frequency
less than
1000
:
>>> table.filter('snr>10', 'frequency<1000')
Custom operations can be defined using filter tuple definitions:
>>> from gwpy.table.filters import in_segmentlist
>>> filter(my_table, ('time', in_segmentlist, segs))
get_column
(name)[source]Return the Column
with the given name
This method is provided only for compatibility with the
glue.ligolw.table.Table
.
Parameters: | name :
|
---|---|
Returns: |
|
Raises: | KeyError
|
hist
(column, **kwargs)[source]Generate a HistogramPlot
of this Table
.
Parameters: | column :
**kwargs
|
---|---|
Returns: | plot :
|
plot
(x, y, *args, **kwargs)[source]Generate an EventTablePlot
of this Table
.
Parameters: | x :
y :
width :
height :
color :
**kwargs
|
---|---|
Returns: | plot :
|
See also
matplotlib.pyplot.figure
matplotlib.figure.Figure.add_subplot
gwpy.plotter.EventTableAxes.plot_table
scatter()
)read
(source, *args, **kwargs)[source]Read data into an EventTable
Parameters: |
*args
format :
selection :
nproc :
verbose :
.. note::
|
---|---|
Returns: |
|
Raises: | astropy.io.registry.IORegistryError
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
ascii.cwb | Yes | No | No |
ascii.omega | Yes | No | No |
gwf | Yes | No | No |
hdf5.pycbc_live | Yes | No | Yes |
ligolw | Yes | Yes | Yes |
root | Yes | Yes | Yes |
root.cwb | Yes | No | No |
root.omicron | Yes | No | No |
write
(target, *args, **kwargs)[source]Write this table to a file
Parameters: | target: `str`
*args
format :
**kwargs
|
---|---|
Raises: | astropy.io.registry.IORegistryError
|
Notes
The available built-in formats are:
Format | Read | Write | Auto-identify |
---|---|---|---|
gwf | Yes | Yes | No |
ligolw | Yes | Yes | Yes |
root | Yes | Yes | Yes |