inspiral_range¶
-
gwpy.astro.inspiral_range(psd, snr=
8, mass1=1.4, mass2=1.4, fmin=None, fmax=None, horizon=False, **kwargs)[source]¶ Calculate the cosmology-corrected inspiral sensitive distance
This method returns the distance (in megaparsecs) to which a compact binary inspiral with the given component masses would be detectable given the instrumental PSD. The calculation is defined in Belczynski et. al (2014):
https://dx.doi.org/10.1088/0004-637x/789/2/120
- Parameters¶
- psd
FrequencySeries the instrumental power-spectral-density data
- snr
float, optional the signal-to-noise ratio for which to calculate range, default:
8- mass1
float,Quantity, optional the mass (
floatassumed in solar masses) of the first binary component, default:1.4- mass2
float,Quantity, optional the mass (
floatassumed in solar masses) of the second binary component, default:1.4- fmin
float, optional the lower frequency cut-off of the integral, default:
psd.df- fmax
float, optional the maximum frequency limit of the integral, defaults to the rest-frame innermost stable circular orbit (ISCO) frequency
- horizon
bool, optional if
True, return the maximal ‘horizon’ luminosity distance, otherwise return the angle-averaged comoving distance, default:False- **kwargs
dict, optional additional keyword arguments to
CBCWaveform
- psd
- Returns¶
- range
Quantity the calculated inspiral range [Mpc]
- range
See also
sensemon_rangefor the method based on LIGO-T030276, also known as LIGO SenseMonitor
inspiral-rangethe package which does heavy lifting for waveform simulation and cosmology calculations
Examples
Grab some data for LIGO-Livingston around GW150914 and generate a PSD:
>>> from gwpy.timeseries import TimeSeries >>> hoft = TimeSeries.fetch_open_data('H1', 1126259446, 1126259478) >>> hoff = hoft.psd(fftlength=4)Now, we can calculate the
inspiral_range():>>> from gwpy.astro import inspiral_range >>> r = inspiral_range(hoff, fmin=30) >>> print(r) 70.4612102889 Mpc