StateVectorDict¶
- class gwpy.timeseries.StateVectorDict[source]¶
Ordered key-value mapping of named
StateVectorobjectsThis object is designed to hold data for many different sources (channels) for a single time span.
The main entry points for this object are the
read()andfetch()data access methods.Attributes Summary
The GPS
[start, stop)extent of data in thisdictMethods Summary
append(other[, copy])Append the dict
otherto this oneclear()copy()Return a copy of this dict with each value copied to new memory
crop([start, end, copy])Crop each entry of this
dictfetch(channels, start, end[, host, port, ...])Fetch data from NDS for a number of channels.
find(channels, start, end[, frametype, ...])Find and read data from frames for a number of channels.
from_nds2_buffers(buffers[, scaled, copy])Construct a new dict from a list of
nds2.bufferobjectsfromkeys(/, iterable[, value])Create a new ordered dictionary with keys from iterable and values set to value.
get(channels, start, end[, pad, scaled, ...])Retrieve data for multiple channels from frames or NDS
items()keys()move_to_end(/, key[, last])Move an existing element to the end (or beginning if last is false).
plot([label, method, figsize, xscale])Plot the data for this
TimeSeriesBaseDict.pop(k[,d])value.
popitem(/[, last])Remove and return a (key, value) pair from the dictionary.
prepend(other, **kwargs)Prepend the dict
otherto this oneread(source, *args, **kwargs)Read data for multiple bit vector channels into a
StateVectorDictresample(rate, **kwargs)Resample items in this dict.
setdefault(/, key[, default])Insert key with a value of default if key is not in the dictionary.
step([label, where, figsize, xscale])Create a step plot of this dict.
update([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()write(target, *args, **kwargs)Write this
TimeSeriesDictto a fileAttributes Documentation
Methods Documentation
-
append(other, copy=
True, **kwargs)[source]¶ Append the dict
otherto this one- Parameters¶
- other
dictofTimeSeries the container to append to this one
- copy
bool, optional if
Truecopy data fromotherbefore storing, only affects those keys inotherthat aren’t inself- **kwargs
other keyword arguments to send to
TimeSeries.append
- other
See also
TimeSeries.appendfor details of the underlying series append operation
- clear() None. Remove all items from od.¶
-
crop(start=
None, end=None, copy=False)[source]¶ Crop each entry of this
dictThis method calls the
crop()method of all entries and modifies this dict in place.- Parameters¶
See also
TimeSeries.cropfor more details
-
classmethod fetch(channels, start, end, host=
None, port=None, verify=False, verbose=False, connection=None, pad=None, scaled=None, allow_tape=None, type=None, dtype=None)[source]¶ Fetch data from NDS for a number of channels.
- Parameters¶
- channels
list required data channels.
- start
LIGOTimeGPS,float,str GPS start time of required data, any input parseable by
to_gpsis fine- end
LIGOTimeGPS,float,str, optional GPS end time of required data, defaults to end of data found; any input parseable by
to_gpsis fine- host
str, optional URL of NDS server to use, if blank will try any server (in a relatively sensible order) to get the data
- port
int, optional port number for NDS server query, must be given with
host.- verify
bool, optional, default:True check channels exist in database before asking for data
- verbose
bool, optional print verbose output about NDS download progress, if
verboseis specified as a string, this defines the prefix for the progress meter- connection
nds2.connection, optional open NDS connection to use.
- scaled
bool, optional apply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
- allow_tape
bool, optional allow data access from slow tapes. If
hostorconnectionis given, the default is to do whatever the server default is, otherwise servers will be searched in logical order allowing tape access if necessary to retrieve the data- type
int,str, optional NDS2 channel type integer or string name to match.
- dtype
numpy.dtype,str,type, ordict NDS2 data type to match
- channels
- Returns¶
- data
TimeSeriesBaseDict a new
TimeSeriesBaseDictof (str,TimeSeries) pairs fetched from NDS.
- data
-
classmethod find(channels, start, end, frametype=
None, frametype_match=None, pad=None, scaled=None, nproc=1, verbose=False, allow_tape=True, observatory=None, **readargs)[source]¶ Find and read data from frames for a number of channels.
- Parameters¶
- channels
list required data channels.
- start
LIGOTimeGPS,float,str GPS start time of required data, any input parseable by
to_gpsis fine- end
LIGOTimeGPS,float,str, optional GPS end time of required data, defaults to end of data found; any input parseable by
to_gpsis fine- frametype
str, optional name of frametype in which this channel is stored, by default will search for all required frame types
- frametype_match
str, optional regular expression to use for frametype matching
- pad
float, optional value with which to fill gaps in the source data, by default gaps will result in a
ValueError.- scaled
bool, optional apply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
- nproc
int, optional, default:1 number of parallel processes to use, serial process by default.
- allow_tape
bool, optional, default:True allow reading from frame files on (slow) magnetic tape
- verbose
bool, optional print verbose output about read progress, if
verboseis specified as a string, this defines the prefix for the progress meter- **readargs
any other keyword arguments to be passed to
read()
- channels
-
classmethod from_nds2_buffers(buffers, scaled=
None, copy=True, **metadata)[source]¶ Construct a new dict from a list of
nds2.bufferobjectsRequires:
nds2- Parameters¶
- buffers
listofnds2.buffer the input NDS2-client buffers to read
- scaled
bool, optional apply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
- copy
bool, optional if
True, copy the contained data array to new to a new array- **metadata
any other metadata keyword arguments to pass to the
TimeSeriesconstructor
- buffers
- Returns¶
- dict
TimeSeriesDict a new
TimeSeriesDictcontaining the data from the given buffers
- dict
- fromkeys(/, iterable, value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
-
classmethod get(channels, start, end, pad=
None, scaled=None, dtype=None, verbose=False, allow_tape=None, **kwargs)[source]¶ Retrieve data for multiple channels from frames or NDS
This method dynamically accesses either frames on disk, or a remote NDS2 server to find and return data for the given interval
- Parameters¶
- channels
list required data channels.
- start
LIGOTimeGPS,float,str GPS start time of required data, any input parseable by
to_gpsis fine- end
LIGOTimeGPS,float,str, optional GPS end time of required data, defaults to end of data found; any input parseable by
to_gpsis fine- frametype
str, optional name of frametype in which this channel is stored, by default will search for all required frame types
- pad
float, optional value with which to fill gaps in the source data, by default gaps will result in a
ValueError.- scaled
bool, optional apply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
- nproc
int, optional, default:1 number of parallel processes to use, serial process by default.
- allow_tape
bool, optional, default:None allow the use of frames that are held on tape, default is
Noneto attempt to allow theTimeSeries.fetchmethod to intelligently select a server that doesn’t use tapes for data storage (doesn’t always work), but to eventually allow retrieving data from tape if required- verbose
bool, optional print verbose output about data access progress, if
verboseis specified as a string, this defines the prefix for the progress meter- **kwargs
other keyword arguments to pass to either
TimeSeriesBaseDict.find(for direct GWF file access) orTimeSeriesBaseDict.fetchfor remote NDS2 access
- channels
- items() a set-like object providing a view on D's items¶
- keys() a set-like object providing a view on D's keys¶
- move_to_end(/, key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
-
plot(label=
'key', method='plot', figsize=(12, 4), xscale='auto-gps', **kwargs)[source]¶ Plot the data for this
TimeSeriesBaseDict.- Parameters¶
- label
str, optional labelling system to use, or fixed label for all elements Special values include
'key': use the key of theTimeSeriesBaseDict,'name': use thenameof each element
If anything else, that fixed label will be used for all lines.
- **kwargs
all other keyword arguments are passed to the plotter as appropriate
- label
- pop(k[, d]) v, remove specified key and return the corresponding¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(/, last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- prepend(other, **kwargs)[source]¶
Prepend the dict
otherto this one- Parameters¶
- other
dictofTimeSeries the container to prepend to this one
- copy
bool, optional if
Truecopy data fromotherbefore storing, only affects those keys inotherthat aren’t inself- **kwargs
other keyword arguments to send to
TimeSeries.prepend
- other
See also
TimeSeries.prependfor details of the underlying series prepend operation
- classmethod read(source, *args, **kwargs)[source]¶
Read data for multiple bit vector channels into a
StateVectorDict- Parameters¶
- source
str,list Source of data, any of the following:
- channels
ChannelList,list a list of channels to read from the source.
- start
LIGOTimeGPS,float,stroptional GPS start time of required data, anything parseable by
to_gps()is fine- end
LIGOTimeGPS,float,str, optional GPS end time of required data, anything parseable by
to_gps()is fine- bits
listoflists,dict, optional the ordered list of interesting bit lists for each channel, or a
dictof (channel,list) pairs- format
str, optional source format identifier. If not given, the format will be detected if possible. See below for list of acceptable formats.
- nproc
int, optional, default:1 number of parallel processes to use, serial process by default.
- gap
str, optional how to handle gaps in the cache, one of
‘ignore’: do nothing, let the underlying reader method handle it
‘warn’: do nothing except print a warning to the screen
‘raise’: raise an exception upon finding a gap (default)
‘pad’: insert a value to fill the gaps
- pad
float, optional value with which to fill gaps in the source data, only used if gap is not given, or
gap='pad'is given
- source
- Returns¶
- statevectordict
StateVectorDict a
StateVectorDictof (channel,StateVector) pairs. The keys are guaranteed to be the ordered listchannelsas given.
- statevectordict
Notes
The available built-in formats are:
Format
Read
Write
Auto-identify
gwf
Yes
Yes
Yes
gwf.framecpp
Yes
Yes
No
gwf.framel
Yes
Yes
No
gwf.lalframe
Yes
Yes
No
hdf5
Yes
No
No
- resample(rate, **kwargs)[source]¶
Resample items in this dict.
This operation over-writes items inplace.
- setdefault(/, key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
-
step(label=
'key', where='post', figsize=(12, 4), xscale='auto-gps', **kwargs)[source]¶ Create a step plot of this dict.
- Parameters¶
- label
str, optional labelling system to use, or fixed label for all elements Special values include
'key': use the key of theTimeSeriesBaseDict,'name': use thenameof each element
If anything else, that fixed label will be used for all lines.
- **kwargs
all other keyword arguments are passed to the plotter as appropriate
- label
- update([E, ]**F) None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values¶
- write(target, *args, **kwargs)[source]¶
Write this
TimeSeriesDictto a fileArguments and keywords depend on the output format, see the online documentation for full details for each format.
- Parameters¶
Notes
The available built-in formats are:
Format
Read
Write
Auto-identify
gwf
Yes
Yes
Yes
gwf.framecpp
Yes
Yes
No
gwf.framel
Yes
Yes
No
gwf.lalframe
Yes
Yes
No
hdf5
Yes
Yes
No
-
append(other, copy=