EventTable¶
- class gwpy.table.EventTable(data=None, masked=False, names=None, dtype=None, meta=None, copy=True, rows=None, copy_indices=True, units=None, descriptions=None, **kwargs)[source]¶
A container for a table of events.
This object expands the default
Table
with extra read/write formats, and methods to perform filtering, rate calculations, and visualisation.See also
astropy.table.Table
for details on parameters for creating an
EventTable
Attributes Summary
True if table has any
MaskedColumn
columns.True if column in the table has values which are masked.
True if table has any mixin columns (defined as columns that are not Column subclasses).
Return a TableILoc object that can be used for retrieving indexed rows in the order they appear in the index.
Return the indices associated with columns of the table as a TableIndices object.
Return a TableLoc object that can be used for retrieving rows by index in a given data range.
Return a TableLocIndices object that can be used for retrieving the row indices corresponding to given table index key value or values.
Maintain tuple that controls table column visibility for print output.
Maintain tuple that controls table column visibility for print output.
Methods Summary
add_column
(col[, index, name, ...])Add a new column to the table using
col
as input.add_columns
(cols[, indexes, names, copy, ...])Add a list of new columns the table using
cols
data objects.add_index
(colnames[, engine, unique])Insert a new index among one or more columns.
add_row
([vals, mask])Add a new row to the end of the table.
argsort
([keys, kind, reverse])Return the indices which would sort the table according to one or more key columns.
as_array
([keep_byteorder, names])Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate).
binned_event_rates
(stride, column, bins[, ...])Calculate an event rate
TimeSeriesDict
over a number of bins.cluster
(index, rank, window)Cluster this
EventTable
over a given column,index
, maximizing over a specified column in the table,rank
.Convert bytestring columns (dtype.kind='S') to unicode (dtype.kind='U') using UTF-8 encoding.
Convert unicode columns (dtype.kind='U') to bytestring (dtype.kind='S') using UTF-8 encoding.
copy
([copy_data])Return a copy of the table.
event_rate
(stride[, start, end, timecolumn])Calculate the rate
TimeSeries
for thisTable
.fetch
(format_, *args, **kwargs)Fetch a table of events from a database
fetch_open_data
(catalog[, columns, ...])Fetch events from an open-data catalogue hosted by GWOSC.
field
(item)Return column[item] for recarray compatibility.
filled
([fill_value])Return copy of self, with masked values filled.
filter
(*column_filters)Apply one or more column slice filters to this
EventTable
from_pandas
(dataframe[, index, units])Create a
Table
from apandas.DataFrame
instanceget_column
(name)Return the
Column
with the given namegroup_by
(keys)Group this table by the specified
keys
hist
(column, **kwargs)Generate a
HistogramPlot
of thisTable
.index_column
(name)Return the positional index of column
name
.index_mode
(mode)Return a context manager for an indexing mode.
insert_row
(index[, vals, mask])Add a new row before the given
index
position in the table.items
()itercols
()Iterate over the columns of this table.
iterrows
(*names)Iterate over rows of table returning a tuple of values for each row.
keep_columns
(names)Keep only the columns specified (remove the others).
keys
()more
([max_lines, max_width, show_name, ...])Interactively browse table with a paging interface.
pformat
([max_lines, max_width, show_name, ...])Return a list of lines for the formatted string representation of
pformat_all
([max_lines, max_width, ...])Return a list of lines for the formatted string representation of
plot
(*args, **kwargs)DEPRECATED, use
EventTable.scatter
pprint
([max_lines, max_width, show_name, ...])Print a formatted string representation of the table.
pprint_all
([max_lines, max_width, ...])Print a formatted string representation of the entire table.
read
(source, *args, **kwargs)Read data into an
EventTable
remove_column
(name)Remove a column from the table.
remove_columns
(names)Remove several columns from the table.
remove_indices
(colname)Remove all indices involving the given column.
remove_row
(index)Remove a row from the table.
remove_rows
(row_specifier)Remove rows from the table.
rename_column
(name, new_name)Rename a column.
rename_columns
(names, new_names)Rename multiple columns.
replace_column
(name, col[, copy])Replace column
name
with the newcol
object.reverse
()Reverse the row order of table rows.
round
([decimals])Round numeric columns in-place to the specified number of decimals.
scatter
(x, y, **kwargs)Make a scatter plot of column
x
vs columny
.show_in_browser
([max_lines, jsviewer, ...])Render the table in HTML and show it in a web browser.
show_in_notebook
([tableid, css, ...])Render the table in HTML and show it in the IPython notebook.
sort
([keys, reverse])Sort the table according to one or more keys.
tile
(x, y, w, h, **kwargs)Make a tile plot of this table.
to_pandas
([index, use_nullable_int])Return a
pandas.DataFrame
instanceupdate
(other[, copy])Perform a dictionary-style update and merge metadata.
values
()values_equal
(other)Element-wise comparison of table with another table, list, or scalar.
write
(target, *args, **kwargs)Write this table to a file
Attributes Documentation
- ColumnClass¶
- colnames¶
- dtype¶
- groups¶
- has_masked_columns¶
True if table has any
MaskedColumn
columns.This does not check for mixin columns that may have masked values, use the
has_masked_values
property in that case.
- has_masked_values¶
True if column in the table has values which are masked.
This may be relatively slow for large tables as it requires checking the mask values of each column.
- has_mixin_columns¶
True if table has any mixin columns (defined as columns that are not Column subclasses).
- iloc¶
Return a TableILoc object that can be used for retrieving indexed rows in the order they appear in the index.
- indices¶
Return the indices associated with columns of the table as a TableIndices object.
- info¶
- loc¶
Return a TableLoc object that can be used for retrieving rows by index in a given data range. Note that both loc and iloc work only with single-column indices.
- loc_indices¶
Return a TableLocIndices object that can be used for retrieving the row indices corresponding to given table index key value or values.
- mask¶
- masked¶
- meta¶
- pprint_exclude_names¶
Maintain tuple that controls table column visibility for print output.
This is a descriptor that inherits from MetaAttribute so that the attribute value is stored in the table meta[‘__attributes__’].
This gets used for the
pprint_include_names
andpprint_exclude_names
Table attributes.
- pprint_include_names¶
Maintain tuple that controls table column visibility for print output.
This is a descriptor that inherits from MetaAttribute so that the attribute value is stored in the table meta[‘__attributes__’].
This gets used for the
pprint_include_names
andpprint_exclude_names
Table attributes.
Methods Documentation
- add_column(col, index=None, name=None, rename_duplicate=False, copy=True, default_name=None)¶
Add a new column to the table using
col
as input. Ifindex
is supplied then insert column beforeindex
position in the list of columns, otherwise append column to the end of the list.The
col
input can be any data object which is acceptable as aTable
column object or can be converted. This includes mixin columns and scalar or length=1 objects which get broadcast to match the table length.To add several columns at once use
add_columns()
or simply calladd_column()
for each one. There is very little performance difference in the two approaches.- Parameters
col : object
Data object for the new column
index : int or None
Insert column before this position or at end (default).
name : str
Column name
rename_duplicate : bool
Uniquify column name if it already exist. Default is False.
copy : bool
Make a copy of the new column. Default is True.
default_name : str or None
Name to use if both
name
andcol.info.name
are not available. Defaults tocol{number_of_columns}
.
Examples
Create a table with two columns ‘a’ and ‘b’, then create a third column ‘c’ and append it to the end of the table:
>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> col_c = Column(name='c', data=['x', 'y']) >>> t.add_column(col_c) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y
Add column ‘d’ at position 1. Note that the column is inserted before the given index:
>>> t.add_column(['a', 'b'], name='d', index=1) >>> print(t) a d b c --- --- --- --- 1 a 0.1 x 2 b 0.2 y
Add second column named ‘b’ with rename_duplicate:
>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> t.add_column(1.1, name='b', rename_duplicate=True) >>> print(t) a b b_1 --- --- --- 1 0.1 1.1 2 0.2 1.1
Add an unnamed column or mixin object in the table using a default name or by specifying an explicit name with
name
. Name can also be overridden:>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> t.add_column(['a', 'b']) >>> t.add_column(col_c, name='d') >>> print(t) a b col2 d --- --- ---- --- 1 0.1 a x 2 0.2 b y
- add_columns(cols, indexes=None, names=None, copy=True, rename_duplicate=False)¶
Add a list of new columns the table using
cols
data objects. If a corresponding list ofindexes
is supplied then insert column before eachindex
position in the original list of columns, otherwise append columns to the end of the list.The
cols
input can include any data objects which are acceptable asTable
column objects or can be converted. This includes mixin columns and scalar or length=1 objects which get broadcast to match the table length.From a performance perspective there is little difference between calling this method once or looping over the new columns and calling
add_column()
for each column.- Parameters
cols : list of object
List of data objects for the new columns
indexes : list of int or None
Insert column before this position or at end (default).
names : list of str
Column names
copy : bool
Make a copy of the new columns. Default is True.
rename_duplicate : bool
Uniquify new column names if they duplicate the existing ones. Default is False.
See also
Examples
Create a table with two columns ‘a’ and ‘b’, then create columns ‘c’ and ‘d’ and append them to the end of the table:
>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> col_c = Column(name='c', data=['x', 'y']) >>> col_d = Column(name='d', data=['u', 'v']) >>> t.add_columns([col_c, col_d]) >>> print(t) a b c d --- --- --- --- 1 0.1 x u 2 0.2 y v
Add column ‘c’ at position 0 and column ‘d’ at position 1. Note that the columns are inserted before the given position:
>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> t.add_columns([['x', 'y'], ['u', 'v']], names=['c', 'd'], ... indexes=[0, 1]) >>> print(t) c a d b --- --- --- --- x 1 u 0.1 y 2 v 0.2
Add second column ‘b’ and column ‘c’ with
rename_duplicate
:>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> t.add_columns([[1.1, 1.2], ['x', 'y']], names=('b', 'c'), ... rename_duplicate=True) >>> print(t) a b b_1 c --- --- --- --- 1 0.1 1.1 x 2 0.2 1.2 y
Add unnamed columns or mixin objects in the table using default names or by specifying explicit names with
names
. Names can also be overridden:>>> t = Table() >>> col_b = Column(name='b', data=['u', 'v']) >>> t.add_columns([[1, 2], col_b]) >>> t.add_columns([[3, 4], col_b], names=['c', 'd']) >>> print(t) col0 b c d ---- --- --- --- 1 u 3 u 2 v 4 v
- add_index(colnames, engine=None, unique=False)¶
Insert a new index among one or more columns. If there are no indices, make this index the primary table index.
- Parameters
colnames : str or list
List of column names (or a single column name) to index
engine : type or None
Indexing engine class to use, from among SortedArray, BST, and SCEngine. If the supplied argument is None (by default), use SortedArray.
unique : bool
Whether the values of the index must be unique. Default is False.
- add_row(vals=None, mask=None)¶
Add a new row to the end of the table.
The
vals
argument can be:- sequence (e.g. tuple or list)
Column values in the same order as table columns.
- mapping (e.g. dict)
Keys corresponding to column names. Missing values will be filled with np.zeros for the column dtype.
None
All values filled with np.zeros for the column dtype.
This method requires that the Table object “owns” the underlying array data. In particular one cannot add a row to a Table that was initialized with copy=False from an existing array.
The
mask
attribute should give (if desired) the mask for the values. The type of the mask should match that of the values, i.e. ifvals
is an iterable, thenmask
should also be an iterable with the same length, and ifvals
is a mapping, thenmask
should be a dictionary.- Parameters
vals : tuple, list, dict or None
Use the specified values in the new row
mask : tuple, list, dict or None
Use the specified mask values in the new row
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1,2],[4,5],[7,8]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 4 7 2 5 8
Adding a new row with entries ‘3’ in ‘a’, ‘6’ in ‘b’ and ‘9’ in ‘c’:
>>> t.add_row([3,6,9]) >>> print(t) a b c --- --- --- 1 4 7 2 5 8 3 6 9
- argsort(keys=None, kind=None, reverse=False)¶
Return the indices which would sort the table according to one or more key columns. This simply calls the
numpy.argsort
function on the table with theorder
parameter set tokeys
.- Parameters
keys : str or list of str
The column name(s) to order the table by
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
reverse : bool
Sort in reverse order (default=False)
- Returns
index_array : ndarray, int
Array of indices that sorts the table by the specified key column(s).
- as_array(keep_byteorder=False, names=None)¶
Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate).
- Parameters
keep_byteorder : bool, optional
By default the returned array has all columns in native byte order. However, if this option is
True
this preserves the byte order of all columns (if any are non-native).names : list, optional:
List of column names to include for returned structured array. Default is to include all table columns.
- Returns
table_array : array or
MaskedArray
Copy of table as a numpy structured array. ndarray for unmasked or
MaskedArray
for masked.
- binned_event_rates(stride, column, bins, operator='>=', start=None, end=None, timecolumn=None)[source]¶
Calculate an event rate
TimeSeriesDict
over a number of bins.- Parameters
stride :
float
size (seconds) of each time bin
column :
str
name of column by which to bin.
bins :
list
one of:
'<'
,'<='
,'>'
,'>='
,'=='
,'!='
, for a standard mathematical operation,'in'
to use the list of bins as containing bin edges, ora callable function that takes compares an event value against the bin value and returns a boolean.
Note
If
bins
is given as a list of tuples, this argument is ignored.start :
float
,LIGOTimeGPS
, optionalGPS start epoch of rate
TimeSeries
.end :
float
,LIGOTimeGPS
, optionalGPS end time of rate
TimeSeries
. This value will be rounded up to the nearest sample if needed.timecolumn :
str
, optional, default:time
name of time-column to use when binning events
- Returns
rates : ~gwpy.timeseries.TimeSeriesDict`
a dict of (bin,
TimeSeries
) pairs describing a rate of events per second (Hz) for each of the bins.
- cluster(index, rank, window)[source]¶
Cluster this
EventTable
over a given column,index
, maximizing over a specified column in the table,rank
.The clustering algorithm uses a pooling method to identify groups of points that are all separated in
index
by less thanwindow
.Each cluster of nearby points is replaced by the point in that cluster with the maximum value of
rank
.- Parameters
index :
str
name of the column which is used to search for clusters
rank :
str
name of the column to maximize over in each cluster
window :
float
window to use when clustering data points, will raise ValueError if
window > 0
is not satisfied- Returns
table :
EventTable
a new table that has had the clustering algorithm applied via slicing of the original
Examples
To cluster an
EventTable
(table
) whoseindex
isend_time
,window
is0.1
, and maximize oversnr
:>>> table.cluster('end_time', 'snr', 0.1)
- convert_bytestring_to_unicode()¶
Convert bytestring columns (dtype.kind=’S’) to unicode (dtype.kind=’U’) using UTF-8 encoding.
Internally this changes string columns to represent each character in the string with a 4-byte UCS-4 equivalent, so it is inefficient for memory but allows scripts to manipulate string arrays with natural syntax.
- convert_unicode_to_bytestring()¶
Convert unicode columns (dtype.kind=’U’) to bytestring (dtype.kind=’S’) using UTF-8 encoding.
When exporting a unicode string array to a file, it may be desirable to encode unicode columns as bytestrings.
- copy(copy_data=True)¶
Return a copy of the table.
- Parameters
copy_data : bool
If
True
(the default), copy the underlying data array. Otherwise, use the same data array. Themeta
is always deepcopied regardless of the value forcopy_data
.
- event_rate(stride, start=None, end=None, timecolumn=None)[source]¶
Calculate the rate
TimeSeries
for thisTable
.- Parameters
stride :
float
size (seconds) of each time bin
start :
float
,LIGOTimeGPS
, optionalGPS start epoch of rate
TimeSeries
end :
float
,LIGOTimeGPS
, optionalGPS end time of rate
TimeSeries
. This value will be rounded up to the nearest sample if needed.timecolumn :
str
, optionalname of time-column to use when binning events, attempts are made to guess this
- Returns
rate :
TimeSeries
a
TimeSeries
of events per second (Hz)- Raises
ValueError
if the
timecolumn
cannot be guessed from the table contents
- classmethod fetch(format_, *args, **kwargs)[source]¶
Fetch a table of events from a database
- Parameters
format :
str
,Engine
the format of the remote data, see _Notes_ for a list of registered formats, OR an SQL database
Engine
object*args
all other positional arguments are specific to the data format, see below for basic usage
columns :
list
ofstr
, optionalthe columns to fetch from the database table, defaults to all
selection :
str
, orlist
ofstr
, optionalone or more column filters with which to downselect the returned table rows as they as read, e.g.
'snr > 5'
; multiple selections should be connected by ‘ && ‘, or given as alist
, e.g.'snr > 5 && frequency < 1000'
or['snr > 5', 'frequency < 1000']
**kwargs
all other positional arguments are specific to the data format, see the online documentation for more details
- Returns
table :
EventTable
a table of events recovered from the remote database
Notes
The available named formats are:
Format
Basic usage
gravityspy
fetch('gravityspy', tablename)
hacr
fetch('hacr', channel, gpsstart, gpstop)
Examples
>>> from gwpy.table import EventTable
To download a table of all blip glitches from the Gravity Spy database:
>>> EventTable.fetch('gravityspy', 'glitches', selection='Label=Blip')
To download a table from any SQL-type server
>>> from sqlalchemy.engine import create_engine >>> engine = create_engine(...) >>> EventTable.fetch(engine, 'mytable')
- classmethod fetch_open_data(catalog, columns=None, selection=None, host='https://www.gw-openscience.org', **kwargs)[source]¶
Fetch events from an open-data catalogue hosted by GWOSC.
- Parameters
catalog :
str
the name of the catalog to fetch, e.g.
'GWTC-1-confident'
columns :
list
ofstr
, optionalthe list of column names to read
selection :
str
, orlist
ofstr
, optionalone or more column filters with which to downselect the returned events as they as read, e.g.
'mass1 < 30'
; multiple selections should be connected by ‘ && ‘, or given as alist
, e.g.'mchirp < 3 && distance < 500'
or['mchirp < 3', 'distance < 500']
host :
str
, optionalthe open-data host to use
- field(item)¶
Return column[item] for recarray compatibility.
- filled(fill_value=None)¶
Return copy of self, with masked values filled.
If input
fill_value
supplied then that value is used for all masked entries in the table. Otherwise the individualfill_value
defined for each table column is used.- Parameters
fill_value : str
If supplied, this
fill_value
is used for all masked entries in the entire table.- Returns
filled_table :
Table
New table with masked values filled
- filter(*column_filters)[source]¶
Apply one or more column slice filters to this
EventTable
Multiple column filters can be given, and will be applied concurrently
- Parameters
-
a column slice filter definition, e.g.
'snr > 10
, or a filter tuple definition, e.g.('snr', <my_func>, <arg>)
- Returns
table :
EventTable
a new table with only those rows matching the filters
Notes
See Filtering tables for more details on using filter tuples
Examples
To filter an existing
EventTable
(table
) to include only rows withsnr
greater than10
, andfrequency
less than1000
:>>> table.filter('snr>10', 'frequency<1000')
Custom operations can be defined using filter tuple definitions:
>>> from gwpy.table.filters import in_segmentlist >>> filter(my_table, ('time', in_segmentlist, segs))
- classmethod from_pandas(dataframe, index=False, units=None)¶
Create a
Table
from apandas.DataFrame
instanceIn addition to converting generic numeric or string columns, this supports conversion of pandas Date and Time delta columns to
Time
andTimeDelta
columns, respectively.- Parameters
dataframe :
pandas.DataFrame
A pandas
pandas.DataFrame
instanceindex : bool
Include the index column in the returned table (default=False)
units: dict
A dict mapping column names to to a
Unit
. The columns will have the specified unit in the Table.- Returns
table :
Table
A
Table
(or subclass) instance- Raises
ImportError
If pandas is not installed
Examples
Here we convert a
pandas.DataFrame
instance to aQTable
.>>> import numpy as np >>> import pandas as pd >>> from astropy.table import QTable
>>> time = pd.Series(['1998-01-01', '2002-01-01'], dtype='datetime64[ns]') >>> dt = pd.Series(np.array([1, 300], dtype='timedelta64[s]')) >>> df = pd.DataFrame({'time': time}) >>> df['dt'] = dt >>> df['x'] = [3., 4.] >>> with pd.option_context('display.max_columns', 20): ... print(df) time dt x 0 1998-01-01 0 days 00:00:01 3.0 1 2002-01-01 0 days 00:05:00 4.0
>>> QTable.from_pandas(df) <QTable length=2> time dt x Time TimeDelta float64 ----------------------- --------- ------- 1998-01-01T00:00:00.000 1.0 3.0 2002-01-01T00:00:00.000 300.0 4.0
- get_column(name)[source]¶
Return the
Column
with the given nameThis method is provided only for compatibility with the
ligo.lw.table.Table
.- Parameters
name :
str
the name of the column to return
- Returns
- column
astropy.table.Column
- column
- Raises
KeyError
if no column is found with the given name
- group_by(keys)¶
Group this table by the specified
keys
This effectively splits the table into groups which correspond to unique values of the
keys
grouping object. The output is a newTableGroups
which contains a copy of this table but sorted by row according tokeys
.The
keys
input togroup_by
can be specified in different ways:String or list of strings corresponding to table column name(s)
Numpy array (homogeneous or structured) with same length as this table
Table
with same length as this table
- hist(column, **kwargs)[source]¶
Generate a
HistogramPlot
of thisTable
.- Parameters
column :
str
Name of the column over which to histogram data
method :
str
, optionalName of
Axes
method to use to plot the histogram, default:'hist'
.**kwargs
Any other keyword arguments, see below.
- Returns
plot :
Plot
The newly created figure.
See also
matplotlib.pyplot.figure
for documentation of keyword arguments used to create the figure.
matplotlib.figure.Figure.add_subplot
for documentation of keyword arguments used to create the axes.
gwpy.plot.Axes.hist
for documentation of keyword arguments used to display the histogram, if the
method
keyword is given, this method might not actually be the one used.
- index_column(name)¶
Return the positional index of column
name
.- Parameters
name : str
column name
- Returns
index : int
Positional index of column
name
.
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Get index of column ‘b’ of the table:
>>> t.index_column('b') 1
- index_mode(mode)¶
Return a context manager for an indexing mode.
- Parameters
mode : str
Either ‘freeze’, ‘copy_on_getitem’, or ‘discard_on_copy’. In ‘discard_on_copy’ mode, indices are not copied whenever columns or tables are copied. In ‘freeze’ mode, indices are not modified whenever columns are modified; at the exit of the context, indices refresh themselves based on column values. This mode is intended for scenarios in which one intends to make many additions or modifications in an indexed column. In ‘copy_on_getitem’ mode, indices are copied when taking column slices as well as table slices, so col[i0:i1] will preserve indices.
- insert_row(index, vals=None, mask=None)¶
Add a new row before the given
index
position in the table.The
vals
argument can be:- sequence (e.g. tuple or list)
Column values in the same order as table columns.
- mapping (e.g. dict)
Keys corresponding to column names. Missing values will be filled with np.zeros for the column dtype.
None
All values filled with np.zeros for the column dtype.
The
mask
attribute should give (if desired) the mask for the values. The type of the mask should match that of the values, i.e. ifvals
is an iterable, thenmask
should also be an iterable with the same length, and ifvals
is a mapping, thenmask
should be a dictionary.- Parameters
vals : tuple, list, dict or None
Use the specified values in the new row
mask : tuple, list, dict or None
Use the specified mask values in the new row
- items()¶
- itercols()¶
Iterate over the columns of this table.
Examples
To iterate over the columns of a table:
>>> t = Table([[1], [2]]) >>> for col in t.itercols(): ... print(col) col0 ---- 1 col1 ---- 2
Using
itercols()
is similar tofor col in t.columns.values()
but is syntactically preferred.
- iterrows(*names)¶
Iterate over rows of table returning a tuple of values for each row.
This method is especially useful when only a subset of columns are needed.
The
iterrows
method can be substantially faster than using the standard Table row iteration (e.g.for row in tbl:
), since that returns a new~astropy.table.Row
object for each row and accessing a column in that row (e.g.row['col0']
) is slower than tuple access.- Parameters
names : list
List of column names (default to all columns if no names provided)
- Returns
rows : iterable
Iterator returns tuples of row values
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table({'a': [1, 2, 3], ... 'b': [1.0, 2.5, 3.0], ... 'c': ['x', 'y', 'z']})
To iterate row-wise using column names:
>>> for a, c in t.iterrows('a', 'c'): ... print(a, c) 1 x 2 y 3 z
- keep_columns(names)¶
Keep only the columns specified (remove the others).
- Parameters
names : str or iterable of str
The columns to keep. All other columns will be removed.
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Keep only column ‘a’ of the table:
>>> t.keep_columns('a') >>> print(t) a --- 1 2 3
Keep columns ‘a’ and ‘c’ of the table:
>>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.keep_columns(['a', 'c']) >>> print(t) a c --- --- 1 x 2 y 3 z
- keys()¶
- more(max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False)¶
Interactively browse table with a paging interface.
Supported keys:
f, <space> : forward one page b : back one page r : refresh same page n : next row p : previous row < : go to beginning > : go to end q : quit browsing h : print this help
- Parameters
max_lines : int
Maximum number of lines in table output
max_width : int or None
Maximum character width of output
show_name : bool
Include a header row for column names. Default is True.
show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
show_dtype : bool
Include a header row for column dtypes. Default is True.
- pformat(max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, html=False, tableid=None, align=None, tableclass=None)¶
- Return a list of lines for the formatted string representation of
the table.
If no value of
max_lines
is supplied then the height of the screen terminal is used to setmax_lines
. If the terminal height cannot be determined then the default is taken from the configuration itemastropy.conf.max_lines
. If a negative value ofmax_lines
is supplied then there is no line limit applied.The same applies for
max_width
except the configuration item isastropy.conf.max_width
.
- Parameters
max_lines : int or None
Maximum number of rows to output
max_width : int or None
Maximum character width of output
show_name : bool
Include a header row for column names. Default is True.
show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
show_dtype : bool
Include a header row for column dtypes. Default is True.
html : bool
Format the output as an HTML table. Default is False.
tableid : str or None
An ID tag for the table; only used if html is set. Default is “table{id}”, where id is the unique integer id of the table object, id(self)
align : str or list or tuple or None
Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are ‘>’, ‘<’, ‘^’, and ‘0=’ for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns.
tableclass : str or list of str or None
CSS classes for the table; only used if html is set. Default is None.
- Returns
lines : list
Formatted table as a list of strings.
- pformat_all(max_lines=- 1, max_width=- 1, show_name=True, show_unit=None, show_dtype=False, html=False, tableid=None, align=None, tableclass=None)¶
- Return a list of lines for the formatted string representation of
the entire table.
If no value of
max_lines
is supplied then the height of the screen terminal is used to setmax_lines
. If the terminal height cannot be determined then the default is taken from the configuration itemastropy.conf.max_lines
. If a negative value ofmax_lines
is supplied then there is no line limit applied.The same applies for
max_width
except the configuration item isastropy.conf.max_width
.
- Parameters
max_lines : int or None
Maximum number of rows to output
max_width : int or None
Maximum character width of output
show_name : bool
Include a header row for column names. Default is True.
show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
show_dtype : bool
Include a header row for column dtypes. Default is True.
html : bool
Format the output as an HTML table. Default is False.
tableid : str or None
An ID tag for the table; only used if html is set. Default is “table{id}”, where id is the unique integer id of the table object, id(self)
align : str or list or tuple or None
Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are ‘>’, ‘<’, ‘^’, and ‘0=’ for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns.
tableclass : str or list of str or None
CSS classes for the table; only used if html is set. Default is None.
- Returns
lines : list
Formatted table as a list of strings.
- plot(*args, **kwargs)[source]¶
DEPRECATED, use
EventTable.scatter
- pprint(max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, align=None)¶
Print a formatted string representation of the table.
If no value of
max_lines
is supplied then the height of the screen terminal is used to setmax_lines
. If the terminal height cannot be determined then the default is taken from the configuration itemastropy.conf.max_lines
. If a negative value ofmax_lines
is supplied then there is no line limit applied.The same applies for max_width except the configuration item is
astropy.conf.max_width
.- Parameters
max_lines : int or None
Maximum number of lines in table output.
max_width : int or None
Maximum character width of output.
show_name : bool
Include a header row for column names. Default is True.
show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
show_dtype : bool
Include a header row for column dtypes. Default is True.
align : str or list or tuple or None
Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are ‘>’, ‘<’, ‘^’, and ‘0=’ for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns.
- pprint_all(max_lines=- 1, max_width=- 1, show_name=True, show_unit=None, show_dtype=False, align=None)¶
Print a formatted string representation of the entire table.
This method is the same as
astropy.table.Table.pprint
except that the defaultmax_lines
andmax_width
are both -1 so that by default the entire table is printed instead of restricting to the size of the screen terminal.- Parameters
max_lines : int or None
Maximum number of lines in table output.
max_width : int or None
Maximum character width of output.
show_name : bool
Include a header row for column names. Default is True.
show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
show_dtype : bool
Include a header row for column dtypes. Default is True.
align : str or list or tuple or None
Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are ‘>’, ‘<’, ‘^’, and ‘0=’ for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns.
- classmethod read(source, *args, **kwargs)[source]¶
Read data into an
EventTable
- Parameters
-
*args
other positional arguments will be passed directly to the underlying reader method for the given format
format :
str
, optionalthe format of the given source files; if not given, an attempt will be made to automatically identify the format
columns :
list
ofstr
, optionalthe list of column names to read
selection :
str
, orlist
ofstr
, optionalone or more column filters with which to downselect the returned table rows as they as read, e.g.
'snr > 5'
; multiple selections should be connected by ‘ && ‘, or given as alist
, e.g.'snr > 5 && frequency < 1000'
or['snr > 5', 'frequency < 1000']
nproc :
int
, optional, default: 1number of CPUs to use for parallel reading of multiple files
verbose :
bool
, optionalprint a progress bar showing read status, default:
False
.. note::
Keyword arguments other than those listed here may be required depending on the
format
- Returns
- table
EventTable
- table
- Raises
astropy.io.registry.IORegistryError
if the
format
cannot be automatically identifiedIndexError
if
source
is an empty list
Notes
The available built-in formats are:
Format
Read
Write
Auto-identify
Deprecated
ascii
Yes
Yes
No
ascii.aastex
Yes
Yes
No
ascii.basic
Yes
Yes
No
ascii.cds
Yes
No
No
ascii.commented_header
Yes
Yes
No
ascii.csv
Yes
Yes
Yes
ascii.cwb
Yes
No
No
ascii.daophot
Yes
No
No
ascii.ecsv
Yes
Yes
Yes
ascii.fast_basic
Yes
Yes
No
ascii.fast_commented_header
Yes
Yes
No
ascii.fast_csv
Yes
Yes
No
ascii.fast_no_header
Yes
Yes
No
ascii.fast_rdb
Yes
Yes
No
ascii.fast_tab
Yes
Yes
No
ascii.fixed_width
Yes
Yes
No
ascii.fixed_width_no_header
Yes
Yes
No
ascii.fixed_width_two_line
Yes
Yes
No
ascii.html
Yes
Yes
Yes
ascii.ipac
Yes
Yes
No
ascii.latex
Yes
Yes
Yes
ascii.mrt
Yes
Yes
No
ascii.no_header
Yes
Yes
No
ascii.omega
Yes
No
No
ascii.qdp
Yes
Yes
Yes
ascii.rdb
Yes
Yes
Yes
ascii.rst
Yes
Yes
No
ascii.sextractor
Yes
No
No
ascii.tab
Yes
Yes
No
asdf
Yes
Yes
Yes
fits
Yes
Yes
Yes
gwf
Yes
Yes
Yes
hdf5
Yes
Yes
Yes
hdf5.pycbc_live
Yes
No
Yes
hdf5.snax
Yes
No
No
ligolw
Yes
Yes
Yes
pandas.csv
Yes
Yes
No
pandas.fwf
Yes
No
No
pandas.html
Yes
Yes
No
pandas.json
Yes
Yes
No
parquet
Yes
Yes
Yes
root
Yes
Yes
Yes
root.cwb
Yes
No
No
root.omicron
Yes
No
No
votable
Yes
Yes
Yes
aastex
Yes
Yes
No
Yes
cds
Yes
No
No
Yes
csv
Yes
Yes
No
Yes
daophot
Yes
No
No
Yes
html
Yes
Yes
No
Yes
ipac
Yes
Yes
No
Yes
latex
Yes
Yes
No
Yes
mrt
Yes
Yes
No
Yes
rdb
Yes
Yes
No
Yes
Deprecated format names like
aastex
will be removed in a future version. Use the full name (e.g.ascii.aastex
) instead.
- remove_column(name)¶
Remove a column from the table.
This can also be done with:
del table[name]
- Parameters
name : str
Name of column to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove column ‘b’ from the table:
>>> t.remove_column('b') >>> print(t) a c --- --- 1 x 2 y 3 z
To remove several columns at the same time use remove_columns.
- remove_columns(names)¶
Remove several columns from the table.
- Parameters
names : str or iterable of str
Names of the columns to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove columns ‘b’ and ‘c’ from the table:
>>> t.remove_columns(['b', 'c']) >>> print(t) a --- 1 2 3
Specifying only a single column also works. Remove column ‘b’ from the table:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.remove_columns('b') >>> print(t) a c --- --- 1 x 2 y 3 z
This gives the same as using remove_column.
- remove_indices(colname)¶
Remove all indices involving the given column. If the primary index is removed, the new primary index will be the most recently added remaining index.
- Parameters
colname : str
Name of column
- remove_row(index)¶
Remove a row from the table.
- Parameters
index : int
Index of row to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove row 1 from the table:
>>> t.remove_row(1) >>> print(t) a b c --- --- --- 1 0.1 x 3 0.3 z
To remove several rows at the same time use remove_rows.
- remove_rows(row_specifier)¶
Remove rows from the table.
- Parameters
row_specifier : slice or int or array of int
Specification for rows to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove rows 0 and 2 from the table:
>>> t.remove_rows([0, 2]) >>> print(t) a b c --- --- --- 2 0.2 y
Note that there are no warnings if the slice operator extends outside the data:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.remove_rows(slice(10, 20, 1)) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
- rename_column(name, new_name)¶
Rename a column.
This can also be done directly with by setting the
name
attribute for a column:table[name].name = new_name
TODO: this won’t work for mixins
- Parameters
name : str
The current name of the column.
new_name : str
The new name for the column
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1,2],[3,4],[5,6]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 3 5 2 4 6
Renaming column ‘a’ to ‘aa’:
>>> t.rename_column('a' , 'aa') >>> print(t) aa b c --- --- --- 1 3 5 2 4 6
- rename_columns(names, new_names)¶
Rename multiple columns.
- Parameters
names : list, tuple
A list or tuple of existing column names.
new_names : list, tuple
A list or tuple of new column names.
Examples
Create a table with three columns ‘a’, ‘b’, ‘c’:
>>> t = Table([[1,2],[3,4],[5,6]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 3 5 2 4 6
Renaming columns ‘a’ to ‘aa’ and ‘b’ to ‘bb’:
>>> names = ('a','b') >>> new_names = ('aa','bb') >>> t.rename_columns(names, new_names) >>> print(t) aa bb c --- --- --- 1 3 5 2 4 6
- replace_column(name, col, copy=True)¶
Replace column
name
with the newcol
object.The behavior of
copy
for Column objects is: - copy=True: new class instance with a copy of data and deep copy of meta - copy=False: new class instance with same data and a key-only copy of metaFor mixin columns: - copy=True: new class instance with copy of data and deep copy of meta - copy=False: original instance (no copy at all)
- Parameters
name : str
Name of column to replace
col :
Column
orndarray
or sequenceNew column object to replace the existing column.
copy : bool
Make copy of the input
col
, default=True
See also
Examples
Replace column ‘a’ with a float version of itself:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> float_a = t['a'].astype(float) >>> t.replace_column('a', float_a)
- reverse()¶
Reverse the row order of table rows. The table is reversed in place and there are no function arguments.
Examples
Create a table with three columns:
>>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'], ... [12,15,18]], names=('firstname','name','tel')) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 Jo Miller 15 John Jackson 18
Reversing order:
>>> t.reverse() >>> print(t) firstname name tel --------- ------- --- John Jackson 18 Jo Miller 15 Max Miller 12
- round(decimals=0)¶
Round numeric columns in-place to the specified number of decimals. Non-numeric columns will be ignored.
- Parameters
decimals: int, dict
Number of decimals to round the columns to. If a dict is given, the columns will be rounded to the number specified as the value. If a certain column is not in the dict given, it will remain the same.
Examples
Create three columns with different types:
>>> t = Table([[1, 4, 5], [-25.55, 12.123, 85], ... ['a', 'b', 'c']], names=('a', 'b', 'c')) >>> print(t) a b c --- ------ --- 1 -25.55 a 4 12.123 b 5 85.0 c
Round them all to 0:
>>> t.round(0) >>> print(t) a b c --- ----- --- 1 -26.0 a 4 12.0 b 5 85.0 c
Round column ‘a’ to -1 decimal:
>>> t.round({'a':-1}) >>> print(t) a b c --- ----- --- 0 -26.0 a 0 12.0 b 0 85.0 c
- scatter(x, y, **kwargs)[source]¶
Make a scatter plot of column
x
vs columny
.- Parameters
x :
str
name of column defining centre point on the X-axis
y :
str
name of column defining centre point on the Y-axis
color :
str
, optional, default:None
name of column by which to color markers
**kwargs
any other keyword arguments, see below
- Returns
plot :
Plot
the newly created figure
See also
matplotlib.pyplot.figure
for documentation of keyword arguments used to create the figure
matplotlib.figure.Figure.add_subplot
for documentation of keyword arguments used to create the axes
gwpy.plot.Axes.scatter
for documentation of keyword arguments used to display the table
- show_in_browser(max_lines=5000, jsviewer=False, browser='default', jskwargs={'use_local_files': True}, tableid=None, table_class='display compact', css=None, show_row_index='idx')¶
Render the table in HTML and show it in a web browser.
- Parameters
max_lines : int
Maximum number of rows to export to the table (set low by default to avoid memory issues, since the browser view requires duplicating the table in memory). A negative value of
max_lines
indicates no row limit.jsviewer : bool
If
True
, prepends some javascript headers so that the table is rendered as a DataTables data table. This allows in-browser searching & sorting.browser : str
Any legal browser name, e.g.
'firefox'
,'chrome'
,'safari'
(for mac, you may need to use'open -a "/Applications/Google Chrome.app" {}'
for Chrome). If'default'
, will use the system default browser.jskwargs : dict
Passed to the
astropy.table.JSViewer
init. Defaults to{'use_local_files': True}
which means that the JavaScript libraries will be served from local copies.tableid : str or None
An html ID tag for the table. Default is
table{id}
, where id is the unique integer id of the table object, id(self).table_class : str or None
A string with a list of HTML classes used to style the table. Default is “display compact”, and other possible values can be found in https://www.datatables.net/manual/styling/classes
css : str
A valid CSS string declaring the formatting for the table. Defaults to
astropy.table.jsviewer.DEFAULT_CSS
.show_row_index : str or False
If this does not evaluate to False, a column with the given name will be added to the version of the table that gets displayed. This new column shows the index of the row in the table itself, even when the displayed table is re-sorted by another column. Note that if a column with this name already exists, this option will be ignored. Defaults to “idx”.
- show_in_notebook(tableid=None, css=None, display_length=50, table_class='astropy-default', show_row_index='idx')¶
Render the table in HTML and show it in the IPython notebook.
- Parameters
tableid : str or None
An html ID tag for the table. Default is
table{id}-XXX
, where id is the unique integer id of the table object, id(self), and XXX is a random number to avoid conflicts when printing the same table multiple times.table_class : str or None
A string with a list of HTML classes used to style the table. The special default string (‘astropy-default’) means that the string will be retrieved from the configuration item
astropy.table.default_notebook_table_class
. Note that these table classes may make use of bootstrap, as this is loaded with the notebook. See this page for the list of classes.css : str
A valid CSS string declaring the formatting for the table. Defaults to
astropy.table.jsviewer.DEFAULT_CSS_NB
.display_length : int, optional
Number or rows to show. Defaults to 50.
show_row_index : str or False
If this does not evaluate to False, a column with the given name will be added to the version of the table that gets displayed. This new column shows the index of the row in the table itself, even when the displayed table is re-sorted by another column. Note that if a column with this name already exists, this option will be ignored. Defaults to “idx”.
Notes
Currently, unlike
show_in_browser
(withjsviewer=True
), this method needs to access online javascript code repositories. This is due to modern browsers’ limitations on accessing local files. Hence, if you call this method while offline (and don’t have a cached version of jquery and jquery.dataTables), you will not get the jsviewer features.
- sort(keys=None, reverse=False)¶
Sort the table according to one or more keys. This operates on the existing table and does not return a new table.
- Parameters
keys : str or list of str
The key(s) to order the table by. If None, use the primary index of the Table.
reverse : bool
Sort in reverse order (default=False)
Examples
Create a table with 3 columns:
>>> t = Table([['Max', 'Jo', 'John'], ['Miller', 'Miller', 'Jackson'], ... [12, 15, 18]], names=('firstname', 'name', 'tel')) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 Jo Miller 15 John Jackson 18
Sorting according to standard sorting rules, first ‘name’ then ‘firstname’:
>>> t.sort(['name', 'firstname']) >>> print(t) firstname name tel --------- ------- --- John Jackson 18 Jo Miller 15 Max Miller 12
Sorting according to standard sorting rules, first ‘firstname’ then ‘tel’, in reverse order:
>>> t.sort(['firstname', 'tel'], reverse=True) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 John Jackson 18 Jo Miller 15
- tile(x, y, w, h, **kwargs)[source]¶
Make a tile plot of this table.
- Parameters
x :
str
name of column defining anchor point on the X-axis
y :
str
name of column defining anchor point on the Y-axis
w :
str
name of column defining extent on the X-axis (width)
h :
str
name of column defining extent on the Y-axis (height)
color :
str
, optional, default:None
name of column by which to color markers
**kwargs
any other keyword arguments, see below
- Returns
plot :
Plot
the newly created figure
See also
matplotlib.pyplot.figure
for documentation of keyword arguments used to create the figure
matplotlib.figure.Figure.add_subplot
for documentation of keyword arguments used to create the axes
gwpy.plot.Axes.tile
for documentation of keyword arguments used to display the table
- to_pandas(index=None, use_nullable_int=True)¶
Return a
pandas.DataFrame
instanceThe index of the created DataFrame is controlled by the
index
argument. Forindex=True
or the defaultNone
, an index will be specified for the DataFrame if there is a primary key index on the Table and if it corresponds to a single column. Ifindex=False
then no DataFrame index will be specified. Ifindex
is the name of a column in the table then that will be the DataFrame index.In addition to vanilla columns or masked columns, this supports Table mixin columns like Quantity, Time, or SkyCoord. In many cases these objects have no analog in pandas and will be converted to a “encoded” representation using only Column or MaskedColumn. The exception is Time or TimeDelta columns, which will be converted to the corresponding representation in pandas using
np.datetime64
ornp.timedelta64
. See the example below.- Parameters
index : None, bool, str
Specify DataFrame index mode
use_nullable_int : bool, default=True
Convert integer MaskedColumn to pandas nullable integer type. If
use_nullable_int=False
or the pandas version does not support nullable integer types (version < 0.24), then the column is converted to float with NaN for missing elements and a warning is issued.- Returns
dataframe :
pandas.DataFrame
A pandas
pandas.DataFrame
instance- Raises
ImportError
If pandas is not installed
ValueError
If the Table has multi-dimensional columns
Examples
Here we convert a table with a few mixins to a
pandas.DataFrame
instance.>>> import pandas as pd >>> from astropy.table import QTable >>> import astropy.units as u >>> from astropy.time import Time, TimeDelta >>> from astropy.coordinates import SkyCoord
>>> q = [1, 2] * u.m >>> tm = Time([1998, 2002], format='jyear') >>> sc = SkyCoord([5, 6], [7, 8], unit='deg') >>> dt = TimeDelta([3, 200] * u.s)
>>> t = QTable([q, tm, sc, dt], names=['q', 'tm', 'sc', 'dt'])
>>> df = t.to_pandas(index='tm') >>> with pd.option_context('display.max_columns', 20): ... print(df) q sc.ra sc.dec dt tm 1998-01-01 1.0 5.0 7.0 0 days 00:00:03 2002-01-01 2.0 6.0 8.0 0 days 00:03:20
- update(other, copy=True)¶
Perform a dictionary-style update and merge metadata.
The argument
other
must be a |Table|, or something that can be used to initialize a table. Columns from (possibly converted)other
are added to this table. In case of matching column names the column from this table is replaced with the one fromother
.- Parameters
other : table-like
Data to update this table with.
copy : bool
Whether the updated columns should be copies of or references to the originals.
See also
Examples
Update a table with another table:
>>> t1 = Table({'a': ['foo', 'bar'], 'b': [0., 0.]}, meta={'i': 0}) >>> t2 = Table({'b': [1., 2.], 'c': [7., 11.]}, meta={'n': 2}) >>> t1.update(t2) >>> t1 <Table length=2> a b c str3 float64 float64 ---- ------- ------- foo 1.0 7.0 bar 2.0 11.0 >>> t1.meta {'i': 0, 'n': 2}
Update a table with a dictionary:
>>> t = Table({'a': ['foo', 'bar'], 'b': [0., 0.]}) >>> t.update({'b': [1., 2.]}) >>> t <Table length=2> a b str3 float64 ---- ------- foo 1.0 bar 2.0
- values()¶
- values_equal(other)¶
Element-wise comparison of table with another table, list, or scalar.
Returns a
Table
with the same columns containing boolean values showing result of comparison.- Parameters
other : table-like object or list or scalar
Object to compare with table
Examples
Compare one Table with other:
>>> t1 = Table([[1, 2], [4, 5], [-7, 8]], names=('a', 'b', 'c')) >>> t2 = Table([[1, 2], [-4, 5], [7, 8]], names=('a', 'b', 'c')) >>> t1.values_equal(t2) <Table length=2> a b c bool bool bool ---- ----- ----- True False False True True True
- write(target, *args, **kwargs)[source]¶
Write this table to a file
- Parameters
target: `str`
filename for output data file
*args
other positional arguments will be passed directly to the underlying writer method for the given format
format :
str
, optionalformat for output data; if not given, an attempt will be made to automatically identify the format based on the
target
filename**kwargs
other keyword arguments will be passed directly to the underlying writer method for the given format
- Raises
astropy.io.registry.IORegistryError
if the
format
cannot be automatically identified
Notes
The available built-in formats are:
Format
Read
Write
Auto-identify
Deprecated
ascii
Yes
Yes
No
ascii.aastex
Yes
Yes
No
ascii.basic
Yes
Yes
No
ascii.commented_header
Yes
Yes
No
ascii.csv
Yes
Yes
Yes
ascii.ecsv
Yes
Yes
Yes
ascii.fast_basic
Yes
Yes
No
ascii.fast_commented_header
Yes
Yes
No
ascii.fast_csv
Yes
Yes
No
ascii.fast_no_header
Yes
Yes
No
ascii.fast_rdb
Yes
Yes
No
ascii.fast_tab
Yes
Yes
No
ascii.fixed_width
Yes
Yes
No
ascii.fixed_width_no_header
Yes
Yes
No
ascii.fixed_width_two_line
Yes
Yes
No
ascii.html
Yes
Yes
Yes
ascii.ipac
Yes
Yes
No
ascii.latex
Yes
Yes
Yes
ascii.mrt
Yes
Yes
No
ascii.no_header
Yes
Yes
No
ascii.qdp
Yes
Yes
Yes
ascii.rdb
Yes
Yes
Yes
ascii.rst
Yes
Yes
No
ascii.tab
Yes
Yes
No
asdf
Yes
Yes
Yes
fits
Yes
Yes
Yes
gwf
Yes
Yes
No
hdf5
Yes
Yes
Yes
jsviewer
No
Yes
No
ligolw
Yes
Yes
Yes
pandas.csv
Yes
Yes
No
pandas.html
Yes
Yes
No
pandas.json
Yes
Yes
No
parquet
Yes
Yes
Yes
root
Yes
Yes
Yes
votable
Yes
Yes
Yes
aastex
Yes
Yes
No
Yes
csv
Yes
Yes
No
Yes
html
Yes
Yes
No
Yes
ipac
Yes
Yes
No
Yes
latex
Yes
Yes
No
Yes
mrt
Yes
Yes
No
Yes
rdb
Yes
Yes
No
Yes
Deprecated format names like
aastex
will be removed in a future version. Use the full name (e.g.ascii.aastex
) instead.