TimeSeriesDict¶
- class gwpy.timeseries.TimeSeriesDict[source]¶
Ordered key-value mapping of named
TimeSeries
objectsThis object is designed to hold data for many different sources (channels) for a single time span.
The main entry points for this object are the
read()
andfetch()
data access methods.Attributes Summary
The GPS
[start, stop)
extent of data in thisdict
Methods Summary
append
(other[, copy])Append the dict
other
to this oneclear
()copy
()Return a copy of this dict with each value copied to new memory
crop
([start, end, copy])Crop each entry of this
dict
fetch
(channels, start, end[, host, port, ...])Fetch data from NDS for a number of channels.
find
(channels, start, end[, frametype, ...])Find and read data from frames for a number of channels.
from_nds2_buffers
(buffers[, scaled, copy])Construct a new dict from a list of
nds2.buffer
objectsfromkeys
(/, iterable[, value])Create a new ordered dictionary with keys from iterable and values set to value.
get
(channels, start, end[, pad, scaled, ...])Retrieve data for multiple channels from frames or NDS
items
()keys
()move_to_end
(/, key[, last])Move an existing element to the end (or beginning if last is false).
plot
([label, method, figsize, xscale])Plot the data for this
TimeSeriesBaseDict
.pop
(k[,d])value.
popitem
(/[, last])Remove and return a (key, value) pair from the dictionary.
prepend
(other, **kwargs)Prepend the dict
other
to this oneread
(source, *args, **kwargs)Read data for multiple channels into a
TimeSeriesDict
resample
(rate, **kwargs)Resample items in this dict.
setdefault
(/, key[, default])Insert key with a value of default if key is not in the dictionary.
step
([label, where, figsize, xscale])Create a step plot of this dict.
update
([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values
()write
(target, *args, **kwargs)Write this
TimeSeriesDict
to a fileAttributes Documentation
Methods Documentation
- append(other, copy=True, **kwargs)[source]¶
Append the dict
other
to this one- Parameters
other :
dict
ofTimeSeries
the container to append to this one
copy :
bool
, optionalif
True
copy data fromother
before storing, only affects those keys inother
that aren’t inself
**kwargs
other keyword arguments to send to
TimeSeries.append
See also
TimeSeries.append
for details of the underlying series append operation
- clear() None. Remove all items from od. ¶
- crop(start=None, end=None, copy=False)[source]¶
Crop each entry of this
dict
This method calls the
crop()
method of all entries and modifies this dict in place.- Parameters
start :
LIGOTimeGPS
,float
,str
GPS start time of required data, any input parseable by
to_gps
is fineend :
LIGOTimeGPS
,float
,str
, optionalGPS end time of required data, defaults to end of data found; any input parseable by
to_gps
is fine
See also
TimeSeries.crop
for more details
- classmethod fetch(channels, start, end, host=None, port=None, verify=False, verbose=False, connection=None, pad=None, scaled=None, allow_tape=None, type=None, dtype=None)[source]¶
Fetch data from NDS for a number of channels.
- Parameters
channels :
list
required data channels.
start :
LIGOTimeGPS
,float
,str
GPS start time of required data, any input parseable by
to_gps
is fineend :
LIGOTimeGPS
,float
,str
, optionalGPS end time of required data, defaults to end of data found; any input parseable by
to_gps
is finehost :
str
, optionalURL of NDS server to use, if blank will try any server (in a relatively sensible order) to get the data
port :
int
, optionalport number for NDS server query, must be given with
host
.verify :
bool
, optional, default:True
check channels exist in database before asking for data
verbose :
bool
, optionalprint verbose output about NDS download progress, if
verbose
is specified as a string, this defines the prefix for the progress meterconnection :
nds2.connection
, optionalopen NDS connection to use.
scaled :
bool
, optionalapply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
allow_tape :
bool
, optionalallow data access from slow tapes. If
host
orconnection
is given, the default is to do whatever the server default is, otherwise servers will be searched in logical order allowing tape access if necessary to retrieve the dataNDS2 channel type integer or string name.
dtype :
numpy.dtype
,str
,type
, ordict
numeric data type for returned data, e.g.
numpy.float
, ordict
of (channel
,dtype
) pairs- Returns
data :
TimeSeriesBaseDict
a new
TimeSeriesBaseDict
of (str
,TimeSeries
) pairs fetched from NDS.
- classmethod find(channels, start, end, frametype=None, frametype_match=None, pad=None, scaled=None, dtype=None, nproc=1, verbose=False, allow_tape=True, observatory=None, **readargs)[source]¶
Find and read data from frames for a number of channels.
- Parameters
channels :
list
required data channels.
start :
LIGOTimeGPS
,float
,str
GPS start time of required data, any input parseable by
to_gps
is fineend :
LIGOTimeGPS
,float
,str
, optionalGPS end time of required data, defaults to end of data found; any input parseable by
to_gps
is fineframetype :
str
, optionalname of frametype in which this channel is stored, by default will search for all required frame types
frametype_match :
str
, optionalregular expression to use for frametype matching
pad :
float
, optionalvalue with which to fill gaps in the source data, by default gaps will result in a
ValueError
.scaled :
bool
, optionalapply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
dtype :
numpy.dtype
,str
,type
, ordict
numeric data type for returned data, e.g.
numpy.float
, ordict
of (channel
,dtype
) pairsnproc :
int
, optional, default:1
number of parallel processes to use, serial process by default.
allow_tape :
bool
, optional, default:True
allow reading from frame files on (slow) magnetic tape
verbose :
bool
, optionalprint verbose output about read progress, if
verbose
is specified as a string, this defines the prefix for the progress meter**readargs
any other keyword arguments to be passed to
read()
- classmethod from_nds2_buffers(buffers, scaled=None, copy=True, **metadata)[source]¶
Construct a new dict from a list of
nds2.buffer
objectsRequires:
nds2
- Parameters
buffers :
list
ofnds2.buffer
the input NDS2-client buffers to read
scaled :
bool
, optionalapply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
copy :
bool
, optionalif
True
, copy the contained data array to new to a new array**metadata
any other metadata keyword arguments to pass to the
TimeSeries
constructor- Returns
dict :
TimeSeriesDict
a new
TimeSeriesDict
containing the data from the given buffers
- fromkeys(/, iterable, value=None)¶
Create a new ordered dictionary with keys from iterable and values set to value.
- classmethod get(channels, start, end, pad=None, scaled=None, dtype=None, verbose=False, allow_tape=None, **kwargs)[source]¶
Retrieve data for multiple channels from frames or NDS
This method dynamically accesses either frames on disk, or a remote NDS2 server to find and return data for the given interval
- Parameters
channels :
list
required data channels.
start :
LIGOTimeGPS
,float
,str
GPS start time of required data, any input parseable by
to_gps
is fineend :
LIGOTimeGPS
,float
,str
, optionalGPS end time of required data, defaults to end of data found; any input parseable by
to_gps
is fineframetype :
str
, optionalname of frametype in which this channel is stored, by default will search for all required frame types
pad :
float
, optionalvalue with which to fill gaps in the source data, by default gaps will result in a
ValueError
.scaled :
bool
, optionalapply slope and bias calibration to ADC data, for non-ADC data this option has no effect.
dtype :
numpy.dtype
,str
,type
, ordict
numeric data type for returned data, e.g.
numpy.float
, ordict
of (channel
,dtype
) pairsnproc :
int
, optional, default:1
number of parallel processes to use, serial process by default.
allow_tape :
bool
, optional, default:None
allow the use of frames that are held on tape, default is
None
to attempt to allow theTimeSeries.fetch
method to intelligently select a server that doesn’t use tapes for data storage (doesn’t always work), but to eventually allow retrieving data from tape if requiredverbose :
bool
, optionalprint verbose output about data access progress, if
verbose
is specified as a string, this defines the prefix for the progress meter**kwargs
other keyword arguments to pass to either
TimeSeriesBaseDict.find
(for direct GWF file access) orTimeSeriesBaseDict.fetch
for remote NDS2 access
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- move_to_end(/, key, last=True)¶
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
- plot(label='key', method='plot', figsize=(12, 4), xscale='auto-gps', **kwargs)[source]¶
Plot the data for this
TimeSeriesBaseDict
.- Parameters
label :
str
, optionallabelling system to use, or fixed label for all elements Special values include
'key'
: use the key of theTimeSeriesBaseDict
,'name'
: use thename
of each element
If anything else, that fixed label will be used for all lines.
**kwargs
all other keyword arguments are passed to the plotter as appropriate
- pop(k[, d]) v, remove specified key and return the corresponding ¶
value. If key is not found, d is returned if given, otherwise KeyError is raised.
- popitem(/, last=True)¶
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
- prepend(other, **kwargs)[source]¶
Prepend the dict
other
to this one- Parameters
other :
dict
ofTimeSeries
the container to prepend to this one
copy :
bool
, optionalif
True
copy data fromother
before storing, only affects those keys inother
that aren’t inself
**kwargs
other keyword arguments to send to
TimeSeries.prepend
See also
TimeSeries.prepend
for details of the underlying series prepend operation
- classmethod read(source, *args, **kwargs)[source]¶
Read data for multiple channels into a
TimeSeriesDict
- Parameters
-
channels :
ChannelList
,list
a list of channels to read from the source.
start :
LIGOTimeGPS
,float
,str
optionalGPS start time of required data, anything parseable by
to_gps()
is fineend :
LIGOTimeGPS
,float
,str
, optionalGPS end time of required data, anything parseable by
to_gps()
is fineformat :
str
, optionalsource format identifier. If not given, the format will be detected if possible. See below for list of acceptable formats.
nproc :
int
, optionalnumber of parallel processes to use, serial process by default.
pad :
float
, optionalvalue with which to fill gaps in the source data, by default gaps will result in a
ValueError
. - Returns
tsdict :
TimeSeriesDict
a
TimeSeriesDict
of (channel
,TimeSeries
) pairs. The keys are guaranteed to be the ordered listchannels
as given.
Notes
The available built-in formats are:
Format
Read
Write
Auto-identify
gwf
Yes
Yes
Yes
gwf.framecpp
Yes
Yes
No
gwf.framel
Yes
Yes
No
gwf.lalframe
Yes
Yes
No
hdf5
Yes
No
No
- resample(rate, **kwargs)[source]¶
Resample items in this dict.
This operation over-writes items inplace.
- setdefault(/, key, default=None)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- step(label='key', where='post', figsize=(12, 4), xscale='auto-gps', **kwargs)[source]¶
Create a step plot of this dict.
- Parameters
label :
str
, optionallabelling system to use, or fixed label for all elements Special values include
'key'
: use the key of theTimeSeriesBaseDict
,'name'
: use thename
of each element
If anything else, that fixed label will be used for all lines.
**kwargs
all other keyword arguments are passed to the plotter as appropriate
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- write(target, *args, **kwargs)[source]¶
Write this
TimeSeriesDict
to a fileArguments and keywords depend on the output format, see the online documentation for full details for each format.
- Parameters
target :
str
output filename
format :
str
, optionaloutput format identifier. If not given, the format will be detected if possible. See below for list of acceptable formats.
Notes
The available built-in formats are:
Format
Read
Write
Auto-identify
gwf
Yes
Yes
Yes
gwf.framecpp
Yes
Yes
No
gwf.framel
Yes
Yes
No
gwf.lalframe
Yes
Yes
No
hdf5
Yes
Yes
No