.. currentmodule:: gwpy.timeseries .. _gwpy-timeseries-io: #################################### Reading and writing time-domain data #################################### The `TimeSeries` object includes :meth:`~TimeSeries.read` and :meth:`~TimeSeries.write` methods to enable reading from and writing to files respectively. For example, to read from an ASCII file containing time and amplitude columns:: >>> data = TimeSeries.read('my-data.txt') The ``format`` keyword argument can be used to manually identify the input file-format, but is not required where the file extension is sufficiently well understood. The :meth:`~TimeSeries.read` and :meth:`~TimeSeries.write` methods take different arguments and keywords based on the input/output file format, see the following sections for details on reading/writing for each of the built-in formats. Those formats are: - :ref:`gwpy-timeseries-io-ascii` - :ref:`gwpy-timeseries-io-gwf` - :ref:`gwpy-timeseries-io-hdf5` - :ref:`gwpy-timeseries-io-wav` .. _gwpy-timeseries-io-ascii: ===== ASCII ===== GWpy supports writing `TimeSeries` (and `~gwpy.frequencyseries.FrequencySeries`) data to ASCII in a two-column ``time`` and ``amplitude`` format. Reading ------- To read a `TimeSeries` from ASCII:: >>> t = TimeSeries.read('data.txt') See :func:`numpy.loadtxt` for keyword argument options. Writing ------- To write a `TimeSeries` to ASCII:: >>> t.write('data.txt') See :func:`numpy.savetxt` for keyword argument options. .. _gwpy-timeseries-io-gwf: =============================== Gravitational-wave frames (GWF) =============================== **Additional dependencies:** |LDAStools.frameCPP|_ or |framel|_ or |lalframe|_ The raw observatory data are archived in ``.gwf`` files, a custom binary format that efficiently stores the time streams and all necessary metadata, for more details about this particular data format, take a look at the specification document `LIGO-T970130 `_. Reading ------- To read data from a GWF file, pass the input file path (or paths) and the name of the data channel to read:: >>> data = TimeSeries.read('HLV-HW100916-968654552-1.gwf', 'L1:LDAS-STRAIN') .. note:: The ``HLV-HW100916-968654552-1.gwf`` file is included with the GWpy source under `/gwpy/testing/data/ `_. Reading a `StateVector` uses the same syntax:: >>> data = StateVector.read('my-state-data.gwf', 'L1:GWO-STATE_VECTOR') Multiple files can be read by passing a list of files:: >>> data = TimeSeries.read([file1, file2], 'L1:LDAS-STRAIN') When reading multiple files, the ``nproc`` keyword argument can be used to distribute the reading over multiple CPUs, which should make it faster:: >>> data = TimeSeries.read([file1, file2, file3, file4], 'L1:LDAS-STRAIN', nproc=2) The above command will separate the input list of 4 file paths into two sets of 2 files, combining the results into a single `TimeSeries` before returning. The ``start`` and ``end`` keyword arguments can be used to downselect data to a specific ``[start, end)`` time segment when reading:: >>> data = TimeSeries.read('HLV-HW100916-968654552-1.gwf', 'L1:LDAS-STRAIN', start=968654552.5, end=968654553) Additionally, the following keyword arguments can be used: .. warning:: These keyword arguments are only supported when using the |LDASTools.frameCPP|_ GWF API. .. table:: Keyword arguments for `TimeSeries.read` :align: left :name: timeseries-read-kwargs ============ ======= ======= ========================================== Keyword Type Default Usage ============ ======= ======= ========================================== ``scaled`` `bool` `True` Apply ADC calibration when reading ``type`` `str` `None` `dict` of channel types (``'ADC'``, ``'Proc'``, or ``'Sim'``) for each channel to be read. This option optimises the reading operation. ============ ======= ======= ========================================== Reading multiple channels ------------------------- To read multiple channels from one or more GWF files (rather than opening and closing the files multiple times), use the `TimeSeriesDict` or `StateVectorDict` classes, and pass a list of data channel names:: >>> data = TimeSeriesDict.read('HLV-HW100916-968654552-1.gwf', ['H1:LDAS-STRAIN', 'L1:LDAS-STRAIN']) In this case the ``resample`` and ``dtype`` keywords can be given as a single value used for all data channels, or a `dict` mapping an argument for each data channel name:: >>> data = TimeSeriesDict.read('HLV-HW100916-968654552-1.gwf', ['H1:LDAS-STRAIN', 'L1:LDAS-STRAIN'], ... resample={'H1:LDAS-STRAIN': 2048}) The above example will resample only the ``'H1:LDAS-STRAIN'`` `TimeSeries` and will not modify that for ``'L1:LDAS-STRAIN'``. .. note:: A mix of `TimeSeries` and `StateVector` objects can be read by using only `TimeSeriesDict` class, and casting the returned data to a `StateVector` using :meth:`~TimeSeries.view`. Writing ------- To write data held in any of the :mod:`gwpy.timeseries` classes to a GWF file, simply use:: >>> data.write('output.gwf') **If the output file already exists it will be overwritten.** GWF library availability ------------------------ (Last we checked...) The three GWF library interfaces are available on the following platforms: .. table:: GWF library availability by platform :align: left :name: gwf-library-platforms ===================== ============================== ===== ===== ======= Library Conda-forge package name Linux macOS Windows ===================== ============================== ===== ===== ======= |LDASTools.frameCPP|_ ``python-ldas-tools-framecpp`` Yes Yes No |framel|_ ``python-framel`` Yes Yes Yes |lalframe|_ ``python-lalframe`` Yes Yes No ===================== ============================== ===== ===== ======= .. _gwpy-timeseries-io-hdf5: ==== HDF5 ==== GWpy allows storing data in HDF5 format files, using a custom specification for storage of metadata. .. warning:: To read GWOSC (LOSC) data from HDF5, please see :ref:`gwpy-timeseries-io-hdf5-gwosc`. Reading ------- To read `TimeSeries` or `StateVector` data held in HDF5 files pass the filename (or filenames) or the source, and the path of the data inside the HDF5 file:: >>> data = TimeSeries.read('HLV-HW100916-968654552-1.hdf', 'L1:LDAS-STRAIN') As with GWF, the ``start`` and ``end`` keyword arguments can be used to downselect data to a specific ``[start, end)`` time segment when reading:: >>> data = TimeSeries.read('HLV-HW100916-968654552-1.hdf', 'L1:LDAS-STRAIN', start=968654552.5, end=968654553) Analogously to GWF, you can read multiple `TimeSeries` from an HDF5 file via :meth:`TimeSeriesDict.read`:: >>> data = TimeSeriesDict.read('HLV-HW100916-968654552-1.hdf') By default, all matching datasets in the file will be read, to restrict the output, specify the names of the datasets you want:: >>> data = TimeSeriesDict.read('HLV-HW100916-968654552-1.hdf', ['H1:LDAS-STRAIN', 'L1:LDAS-STRAIN']) Writing ------- Data held in a `TimeSeries`, `TimeSeriesDict, `StateVector`, or `StateVectorDict` can be written to an HDF5 file via:: >>> data.write('output.hdf') The output argument (``'output.hdf'``) can be a file path, an open `h5py.File` object, or a `h5py.Group` object, to append data to an existing file. If the target file already exists, an :class:`~exceptions.IOError` will be raised, use ``overwrite=True`` to force a new file to be written. To write a `TimeSeries` to an existing file, use ``append=True``:: >>> data.write('output.hdf', append=True) To replace an existing dataset in an existing file, while preserving other data, use *both* ``append=True`` and ``overwrite=True``:: >>> data.write('output.hdf', append=True, overwrite=True) .. _gwpy-timeseries-io-hdf5-gwosc: ============ HDF5 (GWOSC) ============ |GWOSC|_ write data in HDF5 using a custom schema that is incompatible with `format='hdf5'`. ------- Reading ------- GWpy can read data from GWOSC (LOSC) HDF5 files using the `format='hdf5.losc'` keyword:: >>> data = TimeSeries.read('H-H1_GWOSC_16KHZ_R1-1187056280-4096.hdf5', ... format='hdf5.losc') By default, `TimeSeries.read` will return the contents of the ``/strain/Strain`` dataset, while `StateVector.read` will return those of ``/quality/simple``. As with regular HDF5, the ``start`` and ``end`` keyword arguments can be used to downselect data to a specific ``[start, end)`` time segment when reading. .. _gwpy-timeseries-io-wav: === WAV === Any `TimeSeries` can be written to / read from a WAV file using :meth:`TimeSeries.read`: .. warning:: No metadata are stored in the WAV file except the sampling rate, so any units or GPS timing information are lost when converting to/from WAV. Reading ------- To read a `TimeSeries` from WAV:: >>> t = TimeSeries.read('data.wav') See :func:`scipy.io.wavfile.read` for any keyword argument options. Writing ------- To write a `TimeSeries` to WAV:: >>> t.write('data.wav') See :func:`scipy.io.wavfile.write` for keyword argument options.