.. currentmodule:: gwpy.table .. _gwpy-table-io: #################################################### Reading and writing `Table` and `EventTable` objects #################################################### .. note:: This document complements the upstream Astropy documentation on reading/writing :class:`~astropy.table.Table` objects, please refer to :any:`astropy:read_write_tables`. Astropy provides an excellent unified input/output system for the `~astropy.table.Table` object, and GWpy extends upon that to include common gravitational-wave file types, as well as providing event-specific input/output registrations for event data. In the most general case you can read a table of data as follows:: >>> from gwpy.table import Table >>> table = Table.read('mydata.txt') GWpy extends the Astropy functionality with readers for the following file formats: - :ref:`gwpy-table-io-ligolw` - :ref:`gwpy-table-io-ascii-cwb` - :ref:`gwpy-table-io-root` - :ref:`gwpy-table-io-pycbc_live` - :ref:`gwpy-table-io-gwf` Each of the sub-sections below outlines how to read and write in these file formats, include the custom keyword arguments to pass to :meth:`EventTable.read` and :meth:`EventTable.write`. ============================ Multi-processed file reading ============================ The :meth:`EventTable.read` method accepts the ``nproc`` keyword argument, allowing multi-processed reading of lists of files. This argument can be used with any file-format, not just those defined below, but is **not** backported to for use with :meth:`Table.read`. .. _gwpy-table-io-ligolw: =============== ``LIGO_LW`` XML =============== **Additional dependencies:** |python-ligo-lw|_ The LIGO Scientific Collaboration uses a custom scheme of XML in which to store tabular data, called ``LIGO_LW``. Complementing the scheme is a python library - |python-ligo-lw|_ - which allows users to read and write all of the different types of tabular data produced by gravitational-wave searches. Reading and writing tables in ``LIGO_LW`` XML format is supported with ``format='ligolw', tablename='`` where ```` can be any of the supported LSC table names (see :mod:`ligo.lw.lsctables`). Reading ------- When reading, the ``tablename`` keyword argument should be given to identify the table in the file, as follows:: >>> t = EventTable.read('H1-LDAS_STRAIN-968654552-10.xml.gz', tablename='sngl_burst') The result should be something similar to this:: >>> print(t) ifo peak_time peak_time_ns start_time ... confidence chisq chisq_dof bandwidth --- --------- ------------ ---------- ... ---------- ----- --------- --------- H1 968654557 783203126 968654557 ... 16.811825 0.0 512.0 256.0 H1 968654557 781250001 968654557 ... 16.816761 0.0 512.0 256.0 H1 968654557 779296876 968654557 ... 16.696106 0.0 512.0 256.0 H1 968654557 777343751 968654557 ... 16.739489 0.0 512.0 256.0 H1 968654557 775390626 968654557 ... 16.802326 0.0 512.0 256.0 H1 968654557 773437501 968654557 ... 16.30731 0.0 512.0 256.0 H1 968654557 771484376 968654557 ... 16.307253 0.0 512.0 256.0 H1 968654557 769531251 968654557 ... 16.35647 0.0 512.0 256.0 H1 968654557 767578126 968654557 ... 16.561176 0.0 512.0 256.0 H1 968654557 765625001 968654557 ... 16.393112 0.0 512.0 256.0 H1 968654557 763671876 968654557 ... 16.404041 0.0 512.0 256.0 H1 968654557 761718751 968654557 ... 16.405825 0.0 512.0 256.0 H1 968654557 759765626 968654557 ... 16.715092 0.0 512.0 256.0 H1 968654557 757812501 968654557 ... 17.512749 0.0 512.0 256.0 H1 968654557 755859376 968654557 ... 17.347675 0.0 512.0 256.0 H1 968654557 753906251 968654557 ... 17.077478 0.0 512.0 256.0 H1 968654557 751953126 968654557 ... 16.742907 0.0 512.0 256.0 ... ... ... ... ... ... ... ... ... H1 968654560 342773438 968654559 ... 11.029792 0.0 16.0 8.0 H1 968654559 280273438 968654558 ... 12.363036 0.0 16.0 8.0 H1 968654559 217773438 968654558 ... 13.985101 0.0 16.0 8.0 H1 968654559 155273438 968654558 ... 14.662391 0.0 16.0 8.0 H1 968654559 92773438 968654558 ... 15.864924 0.0 16.0 8.0 H1 968654559 30273438 968654558 ... 16.321821 0.0 16.0 8.0 H1 968654558 967773438 968654558 ... 16.975931 0.0 16.0 8.0 H1 968654558 905273438 968654558 ... 19.160393 0.0 16.0 8.0 H1 968654560 811523438 968654560 ... 11.270205 0.0 8.0 4.0 H1 968654560 686523438 968654560 ... 15.839205 0.0 8.0 4.0 H1 968654560 561523438 968654560 ... 15.944695 0.0 8.0 4.0 H1 968654560 436523438 968654559 ... 14.384432 0.0 8.0 4.0 H1 968654560 311523438 968654559 ... 14.465309 0.0 8.0 4.0 H1 968654560 186523438 968654559 ... 13.045853 0.0 8.0 4.0 H1 968654560 561523438 968654560 ... 11.636543 0.0 4.0 4.0 H1 968654560 436523438 968654560 ... 15.344837 0.0 4.0 4.0 H1 968654560 311523438 968654560 ... 11.367717 0.0 4.0 4.0 Length = 2052 rows The ``tablename`` keyword can be omitted if there is only a single table in the file. To restrict the columns returned in the new `EventTable`, use the `columns` keyword argument:: >>> t = EventTable.read('H1-LDAS_STRAIN-968654552-10.xml.gz', tablename='sngl_burst', columns=['peak_time', 'peak_time_ns', 'snr', 'peak_frequency']) Many LIGO_LW table objects (as defined in :mod:`glue.ligolw.lsctables`) include utility functions to create new columns by combining others, e.g. to calculate the Q of a sine-Gaussian pulse from the duration and central frequency. These 'columns' can be requested directly, providing the :class:`glue.ligolw.table.Table` representation of the data has a :meth:`get_` method for that name:: >>> t = EventTable.read('H1-LDAS_STRAIN-968654552-10.xml.gz', tablename='sngl_burst', columns=['snr', 'q', 'duration', 'central_freq']) .. note:: When reading a processed column in this manner, all required input columns for a processed column must be included in the `columns` keyword list. To exclude these columns from the returned data, use the ``ligolw_columns=`` keyword to specify the columns required to provide the output columns:: >>> t = EventTable.read('H1-LDAS_STRAIN-968654552-10.xml.gz', tablename='sngl_burst', columns=['snr', 'q'], ligolw_columns=['snr', 'duration', 'central_freq']) By default, the returned `Table` or `EventTable` uses the dtypes returned by the :mod:`glue.ligolw` library, and functions therein, which often end up as `numpy.object_` arrays in the table. To force all columns to have real `numpy` data types, use the ``use_numpy_dtypes=True`` keyword, which will cast (known) custom object types to a standard `numpy.dtype`, e.g:: >>> t = EventTable.read('H1-LDAS_STRAIN-968654552-10.xml.gz', tablename='sngl_burst', columns=['peak'], ligolw_columns=['peak_time', 'peak_time_ns']) >>> print(type(t[0]['peak'])) >>> t = EventTable.read('H1-LDAS_STRAIN-968654552-10.xml.gz', tablename='sngl_burst', columns=['peak'], ligolw_columns=['peak_time', 'peak_time_ns'], use_numpy_dtypes=True) >>> print(type(t[0]['peak'])) Writing ------- A table can be written as follows:: >>> t.write('new-table.xml', format='ligolw', tablename='sngl_burst') Because ``LIGO_LW`` isn't the only scheme of XML, the ``format`` keyword is required for all `Table.write()` operations. If the target file already exists, an :class:`~exceptions.IOError` will be raised, use ``overwrite=True`` to force a new file to be written. To write a table to an existing file, use ``append=True``:: >>> t.write('new-table.xml', format='ligolw', tablename='sngl_burst', append=True) To replace an existing table of the given type in an existing file, while preserving other tables, use *both* ``append=True`` and ``overwrite=True``:: >>> t.write('new-table.xml', format='ligolw', tablename='sngl_burst', append=True, overwrite=True) .. note:: The |python-ligo-lw| library reads and writes files using an updated version of the ``LIGO_LW`` format compared to :mod:`glue.ligolw` used to. GWpy should support both format versions natively when _reading_, but when _writing_ you may need to explicitly pass the ``ilwdchar_compat=True`` keyword in order to write using the old format:: >>> t.write('new-table.xml', format='ligolw', tablename='sngl_burst', ... ilwdchar_compat=True) .. _gwpy-table-io-ascii-cwb: ============================================ Coherence WaveBurst ASCII (aka `EVENTS.txt`) ============================================ The `Coherent WaveBurst `_ analysis pipeline is used to detect generic gravitational-wave bursts, without using a signal model to restrict the analysis, and runs in both low-latency (online) and offline modes over current GWO data. The analysis uses the ROOT framework for most data products, but also produces ASCII data in a custom format commonly written in a file called ``EVENTS.txt``. Reading ------- To read a cWB ASCII file:: >>> t = EventTable.read('EVENTS.txt', format='ascii.cwb') See the :func:`astropy.io.ascii.read` documentation for full details on keyword arguments when reading ``ascii.cwb`` files. Writing ------- To write a table using the cWB ASCII format: >>> t.write('EVENTS.txt', format='ascii.cwb') [the output file name is not required to be ``'EVENTS.txt'``, this is simply the convention used in the cWB analysis.] .. _gwpy-table-io-root: ==== ROOT ==== **Additional dependencies:** |root_numpy|_ Reading ------- To read a `ROOT `_ tree into a `Table` (or `EventTable`), specify the relevant tree via the ``treename`` keyword argument:: >>> t = Table.read('my-data.root', treename='triggers') If ``treename=None`` is given (default), a single tree will be read if only one exists in the file, otherwise a `ValueError` will be raised. To specify the branches to read, use the ``branches`` keyword argument:: >>> t = Table.read('my-data.root', treename='triggers', branches=['time', 'frequency', 'snr']) Any other keyword arguments will be passed directly to :func:`root_numpy.root2array`. Writing ------- To write a `Table` as a ROOT tree:: >>> t.write('new-table.root') As with reading, the ``treename`` keyword argument can be used to specify the tree, the default is ``treename='tree'``. By default, an existing file with an existing tree of the given name will be appended to, to overwrite use the ``mode='recreate'`` keyword argument:: >>> t.write('new-table.root', treename='triggers', mode='recreate') Any other keyword arguments will be passed directly to :func:`root_numpy.array2root`. .. _gwpy-table-io-pycbc_live: ================= PyCBC Live (HDF5) ================= PyCBC Live is a low-latency search for gravitational waves from compact binary coalescences, built from the |pycbc|_ analysis package. This search writes files on the LIGO Data Grid (LIGO.ORG-authenticated users only) in HDF5 format, containing tables of events; each column in the table is recorded as a separate HDF5 Dataset. Reading ------- To read an `EventTable` from a ``pycbc_live`` format HDF5 file, use the ``format='hdf5.pycbc_live'`` keyword:: >>> t = EventTable.read('H1-Live-1234567890-4.hdf', format='hdf5.pycbc_live') To restrict the returned columns, use the ``columns`` keyword argument:: >>> t = EventTable.read('H1-Live-1234567890-4.hdf', format='hdf5.pycbc_live', columns=['end_time', 'snr', 'chisq']) Similarly to the :ref:`gwpy-table-io-ligolw` format, some processed columns can be specified that are not included in the HDF5 files, but are created on-the-fly. Supported processed columns are: - ``mchirp`` - ``new_snr`` These can be specified without having to specify any of the input columns. Additionally, PyCBC HDF5 table Groups include extra datasets that aren't part of the table, e.g. ``'psd'``. These can be included in the returned `EventTable.meta` `dict` via the keyword ``extended_metadata=True`` (default), or excluded with ``extended_metadata=False``). Writing ------- Writing tables in PyCBC Live HDF5 format is not supported at this time. .. _gwpy-table-io-snax: =========== SNAX (HDF5) =========== The SNAX (Signal-based Noise Acquisition and eXtraction) analysis pipeline is a low-latency search for identifying glitches in h(t) and auxiliary channel data using glitch waveforms, operating in low-latency (online) and offline modes. This search writes files on the LIGO Data Grid (LIGO.ORG-authenticated users only) in HDF5 format containing regularly-sampled features; each channel in the table is recorded as a separate HDF5 Dataset. Reading ------- To read an `EventTable` from a ``snax`` format HDF5 file, specify a ``channel`` and use the ``format='hdf5.snax'`` keyword:: >>> t = EventTable.read('H-GSTLAL_IDQ_FEATURES-1255853400-20.h5', 'H1:CAL-DELTAL_EXTERNAL_DQ', format='hdf5.snax') To restrict the returned columns, use the ``columns`` keyword argument:: >>> t = EventTable.read('H-GSTLAL_IDQ_FEATURES-1255853400-20.h5', 'H1:CAL-DELTAL_EXTERNAL_DQ', format='hdf5.snax', columns=['time', 'snr']) Writing ------- Writing tables in SNAX HDF5 format is not supported at this time. .. _gwpy-table-io-gwf: === GWF === **Additional dependencies:** |LDAStools.frameCPP|_ The Gravitational-Wave Frame file format supports tabular data via ``FrEvent`` structures, which allow storage of arbitrary event information. Reading ------- To read an `EventTable` from a ``GWF``-format file, specify the filename and the ``name`` of the FrEvent structures to read:: >>> t = EventTable.read('events.gwf', 'my-event-name') To restrict the returned columns, use the ``columns`` keyword argument:: >>> t = EventTable.read('events.gwf', 'my-event-name', columns=['time', 'amplitude']) All ``FrEvent`` structures contain the following columns, any other columns are use-specific: --------------- ------------------------------------------------------------------------------------ Column name Description (from `LIGO-T970130 `_) --------------- ------------------------------------------------------------------------------------ ``time`` Reference time of event, as defined by the search algorithm ``amplitude`` Continuous output amplitude returned by event ``probability`` Likelihood estimate of event, if available (probability = -1 if cannot be estimated) ``timeBefore`` Signal duration before reference time (seconds) ``timeAfter`` Signal duration after reference time (seconds) ``comment`` Descriptor of event --------------- ------------------------------------------------------------------------------------ Writing ------- Writing tables in GWF format is not supported at this time. ====================== Available file formats ====================== For a full list of available file formats, see the documentation for the `Table.read` method: .. automethod:: Table.read :noindex: The `EventTable.read` method can understand *all* of the above file formats (auto-identify is **not** inherited), and the following: .. automethod:: EventTable.read :noindex: